US012531722B2

az United States Patent

a0y Patent No.: US 12,531,722 B2

White et al. 45) Date of Patent: *Jan. 20, 2026
(54) SYSTEMS AND METHODS FOR DATA (56) References Cited
ENCRYPTION AND DECRYPTION BASED
ON RANDOMIZED MATRIX AND ORDERED U.S. PATENT DOCUMENTS
TRANSFORMATIONS 8,396,221 B2 3/2013 Sudhakar
. . 8,718,280 B2 5/2014 Farrugia
(71) Applicant: ATOFIA LLC, Nashville, TN (US) (Continued)
(72) Inventors: Thurman Richard White, Nashville,
TN (US); Martin Thomas Poe, III, FOREIGN PATENT DOCUMENTS
NashVille, ™ (US); Martin Thomas CN 116311621 A 6/2023
Poe, IV, Nashville, TN (US)
(73) Assignee: ATOFIA LLC, Nashville, TN (US) OTHER PUBLICATIONS
N . b disclai h Fthi International Search Report and Written Opinion in PCT Applica-
(*) Notice: Sut JetCF to any disc almeézt tefierm N t3; tion No. PCT/US24/29138, dated Aug. 16, 2024, in 20 pgs.
patent is extended or adjusted under
U.S.C. 154(b) by O days.
. Primary Examiner — Bassam A Noaman
Th tent bject t 1 1 dis-
Claliinle):? et 1s subject 1o a feriinal ¢is (74) Attorney, Agent, or Firm — André J. Bahou; Bradley
’ Arant Boult Cummings LLP
(21) Appl. No.: 19/336,798
(22) Filed: Sep. 23, 2025 67 ABSTRACT
. .. A computer-implemented method for generating a pair of
(65) Prior Publication Data integer values as matrix dimensions for encrypting data may
US 2026/0019239 A1 Jan. 15, 2026 include (1) generating a first pair of integer values; (2)
evaluating at least one property (a measure of randomness)
Related U.S. Application Data of'the first pair of integer values; (3) applying selection logic
(63) Continuation of application No. 19/301,768, filed on to the.: first pair %f 1n§:ger Valge{sﬁ thzt 1s.cor.1ﬁg1111 req to a.cc;pé
Aug. 15, 2025, which is a continuation of application or reject a pair based on predelined criteria that 1s satistie
T ’ : when the pair meets a predefined threshold for randomness;
(Continued) (4) determining whether the first pair of integer values is
51) Tut. Cl accepted or rejected based on the applied selection logic; (5)
G1) ;;4L 9 08 2006.01 assigning the first pair of integer values as matrix dimen-
T104L 906 (200 6. 0 1) sions for encrypting data when the first pair of integer values
(01) is accepted based on the applied selection logic; (6) selecting
(52) US.ClL an ordered sequence of two or more transformation engines;
CPC s Hi 0(‘;{’) 15;/ %‘23) (?{00143L0;/)0, 534(121091/30 ‘2)51 ‘; and (7) executing a mixing scheme on the matrix for
AL : encrypting data.
(58) Field of Classification Search

None
See application file for complete search history.

600

13 Claims, 16 Drawing Sheets

R

~3 Mixing Scheme 602

Setup Module
1604

al RitValue 604 eed

Character Maftrix P+1

Encryption Value Set

£20{1)

Witness Moduie e
108

610

Encryption Decider

€12

Decryption Decider

US 12,531,722 B2
Page 2

(56)

Related U.S. Application Data

No. 19/222,615, filed on May 29, 2025, now Pat. No.
12,418,400, which is a continuation-in-part of appli-
cation No. 19/080,179, filed on Mar. 14, 2025, now
Pat. No. 12,463,796, which is a continuation of appli-
cation No. 19/034,297, filed on Jan. 22, 2025, now
Pat. No. 12,289,394, which is a continuation of appli-
cation No. 18/655,171, filed on May 3, 2024, now
Pat. No. 12,212,653, which is a continuation of appli-
cation No. 18/466,822, filed on Sep. 14, 2023, now
Pat. No. 11,895,222, which is a continuation of appli-
cation No. 18/200,211, filed on May 22, 2023, now

Pat. No. 12,034,832.

U.S. PATENT DOCUMENTS

9,037,853 B2
9,635,011 Bl
11,139,952 B2
11,176,624 B2
11,301,586 Bl

5/2015
4/2017
10/2021
11/2021
4/2022

References Cited

Rozek
Wu
Hiromasa
Chu

Poh

11,328,087

11,869,510

12,008,091
2006/0041762
2009/0037743
2009/0217043
2010/0281336
2011/0129087
2015/0278505
2017/0118016
2018/0069703
2018/0287792
2019/0052468
2019/0116162
2020/0143025
2020/0213301
2021/0297252
2021/0333995
2022/0083507
2022/0100896
2023/0084110
2023/0145683
2023/0318829
2023/0379140
2024/0169072

* cited by examiner

Bl 5/2022
Bl 1/2024
B2 6/2024
Al 2/2006
Al 2/2009
Al 8/2009
Al 112010
Al 6/2011
Al 10/2015
Al 4/2017
Al 3/2018
Al 10/2018
Al 2/2019
Al 4/2019
Al 5/2020
Al 7/2020
Al 9/2021
Al 10/2021
Al 3/2022
Al 3/2022
Al 3/2023
Al 5/2023
Al* 10/2023
Al 112023
Al 5/2024

Allen

Greene

Chen

Ma
Narayanaswami
Metke

Seurin

Zhang

Tu

Shibutani
Chakraborty
Fu

Ngoc-Ai Lu
Xu

Giri
Wisniewski
Licciardello et al.
Grossman
Crowell

Streit

Bando
Mandich

Sim oo HO041. 9/3093
Hu

Kim

U.S. Patent Jan. 20, 2026 Sheet 1 of 16 US 12,531,722 B2
100
7 %

Computing Device
102

Data Network
130

Computing Device

120(1)

Computing Device

120({n)

U.S. Patent

Jan. 20, 2026

Sheet 2 of 16

US 12,531,722 B2

/

\

Computing Device
102
Setup Module Witness Module
104 106
e e o
Encryption Decryption
Module Module
108 110
N e W
o —
om0 I
Data Storage
112
S e

U.S. Patent Jan. 20, 2026 Sheet 3 of 16 US 12,531,722 B2

200

N

£ R
Generate a unique single user profile
(LUISUP)

202
N &
4 l ™

Generate a first binary matrix
204

h 4

Mix the first binary matrix based on the
USUP to generate a second binary matrix
206

l

Generate trust anchor information
208

U.S. Patent Jan. 20, 2026 Sheet 4 of 16 US 12,531,722 B2

3060

N

£ R
Generate a unique single user profile
(LUISUP)

302
N &
4 l ™

Encrypting the USUP

304
R o
A 4
4 h'
Storing the encrypted USUP as a binary
fingerprint
306
R W,

U.S. Patent Jan. 20, 2026 Sheet 5 of 16 US 12,531,722 B2

400

N

01001100011011110111001001100101011 |)
01101001000000110100101110000011100
11011101010110110100100000011001C00 >>402
11011110110110001101111011100100010
00000111001101101001011101000010000C
00110000101101101011001010111010000
10116000100000011000110110111101101
11001110011011001010110001101110100
01100101011101000111010101110010001
00000011000010110010001101001011100
00011010010111001101100011011010010
11011100110011100100000011001010110
11000110100101110100001011000010000
00111001101100101011001000010000001 >“406
10010001101111001000000110010101101
00101110101011100110110110101101111
01100160001000000111010001100101011
01101011100000110111101110010001000
00011010010110111001100011011010010 | _/

U.S. Patent

402

N

Jan. 20, 2026 Sheet 6 of 16

US 12,531,722 B2

Group Policy
202

Entity Policy
204

Ciphertext Policy
206

US 12,531,722 B2

Sheet 7 of 16

Jan. 20, 2026

U.S. Patent

19
Japa uondAinag

019
J8pdsg uondAioug

(TJ0Z9

125 2njep uoiidAioul
T+d XUieW Ja108iRYD

FIERY

909 w

09 anjeA ug

709 awayos Sungin

907
IMNPOIA] SSBULM

0T
ajnpoip dmass

003

U.S. Patent Jan. 20, 2026 Sheet 8 of 16 US 12,531,722 B2

Character Matrix P+1 Encryption Value Set
20(1

Character Matrix P-1 Encryption Value Set
20(2

P+1) Encryption Value Set
2

P-1) Encryption Value Set
2

Nibble Matrix P+1 Encryption Value Set
20(5

Nibble Matrix P-1 Encryption Value Set
2

Nibble Matrix m{P+1) Encryption Value Set
20

Nibble Matrix m(P-1) Encryption Value Set
20

Bit Matrix P+1 Encryption Value Set

-

o)}

———

Character Matrix m

8)]
o
(8]

L sannd

Character Matrix m

(o))
o
B

)}
o

)]
o
1))

o
~J

)]
oo

o)
N
-
E

Bit Matrix P-1 Encryption Value Set

o
N
-
fomd
E-o

Bit Matrix m(P+1) Encryption Value Set
2

Bit Matrix m(P-1) Encryption Value Set
620(12

N
Q
et
fod

FIG. 6B

U.S. Patent Jan. 20, 2026 Sheet 9 of 16 US 12,531,722 B2

700G

N

Generate the group policy
702

!

Generate the entity policy
704

¥

Generate the ciphertext policy
706

|

Generate the instructions
708

|

Encrypt the data
710

Compile the ciphertext
712

U.S. Patent Jan. 20, 2026 Sheet 10 of 16 US 12,531,722 B2

800

N

Decrypt the group policy
802

!

Decrypt the entity policy
804

¥

Decrypt the ciphertext policy
806

|

Decrypt the instructions
808

|

Decrypt the ciphertext body
810

U.S. Patent Jan. 20, 2026 Sheet 11 of 16 US 12,531,722 B2

900

N

Receive the data to be encrypted
902

!

Retrieve the encryption value sets
904

!

Generate one or more character matrices
906

|

Execute one or more transformations on
the one or more character matrices
908

!

Prepare the decryption value sets
910

US 12,531,722 B2

Sheet 12 of 16

Jan. 20, 2026

U.S. Patent

001
Sispuiewsy

00T

{1J0Z0T
19§ anjep uondAnsg

T+d XUIBN J810BIBYD

a;

JoieiaUan) JaPUieiUaYy

1

Z19 4aposqg uondAinsg

ERERY

- 709 anjep g

Z09 awayos Buxiw

{(T)0Z9
18§ anjep uondAiouy

T+d X141 J9108IEYD

N

0001

U.S. Patent

Jan. 20, 2026

Sheet 13 of 16

620(1)~

Character Matrix P+1
Encryption Value Set

US 12,531,722 B2

\ 4

620(2)—]

Character Matrix P-1
Encryption Value Set

Character Matrix P+1
Decryption Value Set

| 1020(1)

620(3)—]

Character Matrix m{P+1)

Encryption Value Set

Character Matrix P-1
Decryption Value Set

| 1020(2)

620{4)~—.

Character Matrix m({P-1)

Encryption Value Set

Character Matrix m(P+1)

Decryption Value Set

| 1020(3)

620(5)~]

Nibble Matrix P+1
Encryption Value Set

Character Matrix m{P-1)

Decryption Value Set

| 1020(4)

620(6)~

Nibble Matrix P-1
Encryption Value Set

Nibble Matrix P+1
Decryption Value Set

L 1020(5)

620(7)~]

Nibble Matrix m(P+1}
Encryption Value Set

Nibble Matrix P-1
Decryption Value Set

| 1020(6)

620{8)~—]

Nibble Matrix m{P-1)
Encryption Value Set

Nibble Matrix m{P+1)
Decryption Value Set

- 1020(7)

620(9)—]

Bit Matrix P+1
Encryption Value Set

Nibble Matrix m{P-1}
Decryption Value Set

| 1020(8)

620{10)~—]

Bit Matrix P-1
Encryption Value Set

Bit Matrix P+1
Decryption Value Set

| 1020(9)

620(11)~]

Bit Matrix m{P+1)
Encryption Value Set

Bit Matrix P-1
Decryption Value Set

| 1020(10)

620{12)~—

Bit Matrix m(P-1)
Encryption Value Set

Bit Matrix m{P+1)
Decryption Value Set

| __1020{11)

Bit Matrix m{P-1)
Decryption Value Set

| 1020(12)

FIG. 10B

U.S. Patent Jan. 20, 2026 Sheet 14 of 16 US 12,531,722 B2

1100

N

Receive the ciphertext body
1102

l

Retrieve the decryption value sets
1104

l

Execute one or more transformations on
the ciphertext body
1106

U.S. Patent Jan. 20, 2026

1200 Sender
\ Gateway Proof 1
{Group Policy)}
1202

!

Gateway Proof 2
{Entity Policy)
1204

!

Gateway Proof 3
{Ciphertext Policy — 1st
{dentifier}

1206

!

Gateway Proof 4
{Ciphertext Policy ~
2nd ldentifier)
1208

A 4

Witness Operations
1210

!

Ciphertext Encryption
1212

Sheet 15 of 16

US 12,531,722 B2

Recipient

Gateway Proof 1
{Group Policy)
1214

¥

Gateway Proof 2
{Entity Policy}
1216

¥

Gateway Proof 3
{Ciphertext Policy — 1st
Identifier)

1218

¥

Gateway Proof 4
{Ciphertext Policy ~
2nd Identifier)
1220

v

Integrity Check
1222

v

Instructions Decryption
1224

v

Ciphertext Decryption
1226

U.S. Patent Jan. 20, 2026 Sheet 16 of 16 US 12,531,722 B2

1300
[Third—party Computing Device\
1302
~ T
S R
Binary Fingerprint
Storage
1304
e A
\. J

Data Network

Computing Device
102

US 12,531,722 B2

1
SYSTEMS AND METHODS FOR DATA
ENCRYPTION AND DECRYPTION BASED
ON RANDOMIZED MATRIX AND ORDERED
TRANSFORMATIONS

CROSS-REFERENCES TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 19/301,768 titled “Systems and Methods for
Data Encryption, Decryption, and Authentication,” filed
Aug. 15, 2025 that is pending and the entirety of which is
incorporated by reference, which is a continuation of U.S.
patent application Ser. No. 19/222,615 titled “Systems and
Methods for Data Encryption, Decryption, and Authentica-
tion,” filed May 29, 2025 and issued as U.S. Pat. No.
12,418,400 on Sep. 16, 2025 and the entirety of which is
incorporated by reference, which is a continuation-in-part of
U.S. patent application Ser. No. 19/080,179, entitled “Sys-
tems and Methods for Data Encryption, Decryption, and
Authentication,” filed Mar. 14, 2025 that is pending and the
entirety of which is incorporated by reference, which is a
continuation of U.S. patent application Ser. No. 19/034,297,
entitled “Systems and Methods for Data Encryption,
Decryption, and Authentication,” filed Jan. 22, 2025 and
issued as U.S. Pat. No. 12,289,394 on Apr. 29, 2025 and the
entirety of which is incorporated by reference, which is a
continuation of U.S. patent application Ser. No. 18/655,171,
entitled “Systems and Methods for Data Encryption,
Decryption, and Authentication,” filed May 3, 2024 and
issued as U.S. Pat. No. 12,212,653 on Jan. 28, 2025 and the
entirety of which is incorporated by reference, which is a
continuation of U.S. patent application Ser. No. 18/466,822,
entitled “Systems and Methods for Data Encryption,
Decryption, and Authentication,” filed Sep. 14, 2023 and
issued as U.S. Pat. No. 11,895,222 on Feb. 6, 2024 and the
entirety of which is incorporated by reference, which is a
continuation of U.S. patent application Ser. No. 18/200,211,
entitled “Systems and Methods for Data Encryption,
Decryption, and Authentication,” filed May 22, 2023 and
issued as U.S. Pat. No. 12,034,832 on Jul. 9, 2024 and the
entirety of which is incorporated by reference.

A portion of the disclosure of this patent document
contains material that is subject to copyright protection. The
copyright owner has no objection to the reproduction of the
patent document or the patent disclosure, as it appears in the
U.S. Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

BACKGROUND OF THE DISCLOSURE

The present disclosure generally relates to computing
technology, and more particularly to systems and methods
for data encryption, decryption, and authentication.

Conventional cryptographic systems with a hierarchical
structure include a trust anchor that is an authoritative entity
for which trust is assumed and not derived. For example, in
an architecture that implements the X.509 standard, the trust
anchor is a root certificate from which the whole chain of
trust is derived. The trust anchor must be in the possession
of the trusting party beforehand to make any further certifi-
cate path validation possible. Conventional operating sys-

40

45

55

2

tems provide a built-in list of self-signed root certificates to
function as trust anchors for applications. Web browsers and
applications often provide their own list of trust anchors.

There are several disadvantages associated with such
hierarchical cryptographic structures. First, the end-user of
an operating system using such structures must implicitly
trust in the correct operation of such software, and the
software manufacturer, in turn, must delegate trust for
certain cryptographic operations to the certificate authorities
responsible for the root certificates. Such trust is not always
reliable. Second, a malicious actor may modify some of the
structure data, such as the list of certificates or the list of trust
anchors, such that the malicious actor can decrypt encrypted
data.

What is needed, then, are new systems and methods for
data encryption, decryption, and authentication.

BRIEF SUMMARY

This Brief Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.

The systems and methods disclosed herein may not
employ certificate authorities, certificate chains of trust,
digital signatures, hashes, or asymmetric encryption in the
design of trust anchor architecture. Instead, the systems and
methods disclosed herein may include a new scheme and
program for creating trust anchors based on context aware-
ness, decision procedures or gateway proofs.

One aspect of the disclosure is a computer-implemented
method for generating a trusted setup on a computing
device. The method may include generating a unique single
user profile (USUP) based on data derived from the com-
puting device. The method may include generating a first
binary matrix. The method may include executing a matrix
mixing operation on the first binary matrix based on the
USUP. Executing the matrix mixing operation may generate
a second binary matrix. The method may include generating
trust anchor data. Generating the trust anchor data may
include selecting a first number and inputting the first
number into a remainder generator. The remainder generator
may be configured to select a second number, calculate a
remainder, wherein the remainder is the remainder of the
first number divided by the second number, and output a
value pair that includes the second number and the remain-
der. Generating the trust anchor data may include converting
the remainder to a first binary value, and storing the first
binary value. At the conclusion of this trusted setup method,
the computing device may be ready to encrypt data without
using hierarchical cryptographic structures.

Another aspect of the disclosure includes a computer-
implemented method for generating a ciphertext. The
method may include generating a header for the ciphertext.
The header may include data configuring one or more
permissions for decrypting the ciphertext. The method may
include generating instructions for the ciphertext. The
instructions may include data used in the encryption of data.
The method may include generating a ciphertext body.
Generating the ciphertext body may include receiving the
data to be encrypted. Generating the ciphertext body may
include retrieving at least one encryption value set. The at
least one encryption value set may include a mixing scheme,
a bit value table, a first matrix size, a second matrix size, an
encryption decider, and a decryption decider. Generating the

US 12,531,722 B2

3

ciphertext body may include generating at least one char-
acter matrix based on the data to be encrypted. Generating
the ciphertext body may include executing at least one
transformation operation on the at least one character matrix
to generate the ciphertext body. The at least one transfor-
mation operation may be based on the at least one encryption
value set. The method may include generating at least one
decryption value set based on the at least one encryption
value set. The method may include compiling the header, the
instructions, and the ciphertext body into the ciphertext. As
can be seen, the encryption of the plaintext message and the
preparation of the ciphertext may not use hierarchical cryp-
tographic structures.

Another aspect of the disclosure includes a computer-
implemented method for decrypting a ciphertext. The
method may include receiving a ciphertext. The ciphertext
may include a header, instructions, and a ciphertext body.
The method may include retrieving at least one decryption
value set from the instructions. The at least one decryption
value set may include a mixing scheme, a bit value table, a
first matrix size, a second matrix size, and a decryption
decider. the method may include generating at least one bit
matrix based on the ciphertext body. The method may
include executing at least one transformation operation on
the at least one bit matrix to generate a plaintext decryption
of the ciphertext body. The at least one transformation
operation may be based on the at least one decryption value
set. As can be seen, the decryption of the ciphertext body
may not use hierarchical cryptographic structures.

The systems and methods disclosed herein include ele-
ments that improve the functioning of a computer and
improve the technical field of cryptography. As discussed in
the Background section above, in conventional hierarchical
cryptographic structures, trust is assumed and not derived.
One disadvantage of this is that the end-user using such
structures must implicitly trust in the correct operation of the
implementing software, and the software manufacturer, in
turn, must delegate trust for certain cryptographic operations
to the certificate authorities responsible for the root certifi-
cates. Such trust is not always reliable. Malicious actor may
modify some of the structure data, such as the list of
certificates or the list of trust anchors, such that the mali-
cious actor can decrypt encrypted data. The systems and
methods disclosed herein do not assuming such trust.
Instead, users create their own trust anchors during the setup
process, and the encryption of data uses data from these trust
anchors to encrypt data. Furthermore, the encryption value
sets, with their mixing schemes, a bit value tables, matrix
sizes, encryption and decryption deciders, and the transfor-
mation operations that use them to encrypt data, provide for
an unconventional way to encrypt data.

Additionally, another disadvantage of the conventional
hierarchical cryptographic structures is that these structures
often involve the generation of large prime numbers in order
to create public and private keys. Determining whether a
large number is prime uses a large amount of computing
resources. The systems and methods disclosed here do not
generate large prime numbers and, thus, do not use the large
amounts of computing resources. Thus, the systems and
methods disclosed herein provide for encryption and decryp-
tion of data that is both more secure than conventional
hierarchical cryptographic structures and more efficient.

Numerous other objects, advantages and features of the
present disclosure will be readily apparent to those of skill

10

15

20

25

30

35

40

45

50

55

60

65

4

in the art upon a review of the following drawings and
description of various embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic block diagram illustrating one
embodiment of a system for data encryption or decryption.

FIG. 1B is a schematic block diagram illustrating one
embodiment of a computing device for use in a system for
data encryption or decryption.

FIG. 2 is a flowchart illustrating one embodiment of a
method for generating or setting up a trusted setup on the
computing device.

FIG. 3 is a flowchart illustrating one embodiment of a
method for generating identity- and trust-providing data.

FIG. 4 is a schematic block diagram illustrating one
embodiment of a ciphertext in a system for data encryption
or decryption.

FIG. 5 is a schematic block diagram illustrating one
embodiment of a ciphertext header.

FIG. 6A is a data flow diagram illustrating one embodi-
ment of the construction of an encryption value set for use
in a system for data encryption or decryption.

FIG. 6B is a schematic block diagram illustrating one
embodiment of a set of encryption value sets.

FIG. 7 is a flowchart diagram illustrating one embodiment
of an encryption method for use in a system for data
encryption or decryption.

FIG. 8 is a flowchart diagram illustrating one embodiment
of a decryption method for use in a system for data encryp-
tion or decryption.

FIG. 9 is a flowchart diagram illustrating one embodiment
of'a method for encrypting data in order to generate the body
of the ciphertext.

FIG. 10A is a data flow diagram illustrating one embodi-
ment of the construction of a decryption value set for use in
a system for data encryption or decryption.

FIG. 10B is a is a schematic block diagram illustrating
one embodiment of a set of decryption value sets and the
corresponding encryption value sets they are derived from.

FIG. 11 is a flowchart diagram illustrating one embodi-
ment of a method for decrypting the body of the ciphertext.

FIG. 12 is a data flow diagram illustrating one embodi-
ment showing the operation of one embodiment of a proot-
of-work for use in a system for data encryption or decryp-
tion.

FIG. 13 is a schematic block diagram illustrating one
embodiment of a system using a third-party computing
device to store binary fingerprints for use in a system for
data encryption or decryption.

DETAILED DESCRIPTION

While the making and using of various embodiments of
the present disclosure are discussed in detail below, it should
be appreciated that the present disclosure provides many
applicable inventive concepts that are embodied in a wide
variety of specific contexts. The specific embodiments dis-
cussed herein are merely illustrative of specific ways to
make and use the disclosure and do not delimit the scope of
the disclosure. Those of ordinary skill in the art will recog-
nize numerous equivalents to the specific apparatus and
methods described herein. Such equivalents are considered
to be within the scope of this disclosure and are covered by
the claims.

In the drawings, not all reference numbers are included in
each drawing, for the sake of clarity. In addition, positional

US 12,531,722 B2

5

terms such as “upper,” “lower,” “side,” “top,” “bottom,” etc.
refer to the apparatus when in the orientation shown in the
drawing. A person of skill in the art will recognize that the
apparatus can assume different orientations when in use.

Reference throughout this specification to “one embodi-
ment,” “an embodiment,” “another embodiment,” or similar
language means that a particular feature, structure, or char-
acteristic described in connection with the embodiment is
included in at least one embodiment. Thus, appearances of
the phrases “in one embodiment,” “in an embodiment,” “in
some embodiments,” and similar language throughout this
specification may, but do not necessarily, all refer to the
same embodiment, but mean “one or more but not neces-
sarily all embodiments” unless expressly specified other-
wise.

The terms “including,” “comprising,” “having,” and
variations thereof mean “including but not limited to” unless
expressly specified otherwise. An enumerated listing of
items does not imply that any or all of the items are mutually
exclusive and/or mutually inclusive, unless expressly speci-
fied otherwise. As used herein, the term “a,” “an,” or “the”
means “one or more” unless otherwise specified. The term
“or” means “and/or” unless otherwise specified.

Multiple elements of the same or a similar type may be
referred to as “Elements 102(1)-(n)” where n may include a
number. Referring to one of the elements as “Element 102”
refers to any single element of the Elements 102(1)-(n).
Additionally, referring to different elements “First Elements
102(1)-(n)” and “Second Elements 104(1)-(n)” does not
necessarily mean that there must be the same number of First
Elements as Second Elements and is equivalent to “First
Elements 102(1)-(n)” and “Second Elements (1)-(m)” where
m is a number that may be the same or may be a different
number than n.

Furthermore, through the disclosure, different matrices
may be referred to as having the dimensions m or n. The
letters m and n may represent numbers that may be different
or may be the same. Also, while a first matrix and a second
matrix may both have dimensions indicated by m or n, this
does not necessarily mean that both matrices are the same
size. The m of the first matrix may be a different value than
the m of the second matrix, and the same may be true
regarding the n.

As used herein, the term “computing device” may include
a desktop computer, a laptop computer, a tablet computer, a
mobile device such as a mobile phone or a smart phone, a
smartwatch, a gaming console, an application server, a
database server, or some other type of computing device. A
computing device may include a physical computing device
or may include a virtual machine (VM) executing on another
computing device. A computing device may include a cloud
computing system, a distributed computing system, or
another type of multi-device system.

As used herein, the term “data network” may include a
local area network (LAN), wide area network (WAN), the
Internet, or some other network. A data network may include
one or more routers, switches, repeaters, hubs, cables, or
other data communication components. A data network may
include a wired connection or a wireless connection.

As used herein, the term “computing platform” or “plat-
form” may include a computing environment where a por-
tion of software can execute. A computing platform may
include hardware on which the software may execute. The
computing platform may include an operating system. The
computing platform may include one or more software
applications, scripts, functions, or other software. The com-
puting platform may include one or more application pro-

9

29 <

2 <

15

40

45

6

gramming interfaces (APIs) by which different portions of
the software of the platform may communicate with each
other or invoke functions. The computing platform may
include one or more APIs by which it may communicate
with external software applications or by which external
software applications may interact with the platform. The
computing platform may include a software framework. The
computing platform may include one or more VMs. The
software platform may include one or more data storages.
The software platform may include a client application that
executes on an external computing device and that interacts
with the platform in a client-server architecture.

As used herein, the term “data storage” may include a
tangible device that retains and stores data. Such device may
include an electronic storage device, a magnetic storage
device, an optical storage device, an electromagnetic storage
device, a semiconductor storage device, or any suitable
combination of the foregoing. A non-exhaustive list of more
specific examples of the devices may include a portable
computer diskette, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or flash memory), a static random
access memory (SRAM), a hard disk drive (HDD), a solid
state drive, a portable compact disc read-only memory
(CD-ROM), a digital versatile disk (DVD), a memory stick,
a floppy disk, a mechanically encoded device such as
punch-cards or raised structures in a groove having instruc-
tions recorded thereon, and any suitable combination of the
foregoing. “Data storage,” in some embodiments, may
include a data structure that stores data, and the data
structure may be stored on a tangible data storage. Such data
storage may include a file system, a database, cloud storage,
a data warehouse, a data lake, or other data structures
configured to store data.

As used herein, the terms “determine” or “determining”
may include a variety of actions. For example, “determin-
ing” may include calculating, computing, processing, deriv-
ing, looking up (e.g., looking up in a table, a database or
another data structure), ascertaining, or other actions. Also,
“determining” may include receiving (e.g., receiving infor-
mation or data), accessing (e.g., accessing data in a memory,
data storage, distributed ledger, or over a network), or other
actions. Also, “determining” may include resolving, select-
ing, choosing, establishing, or other similar actions.

As used herein, the terms “provide” or “providing” may
include a variety of actions. For example, “providing” may
include generating data, storing data in a location for later
retrieval, transmitting data directly to a recipient, transmit-
ting or storing a reference to data, or other actions. “Pro-
viding” may also include encoding, decoding, encrypting,
decrypting, validating, verifying, or other actions.

As used herein, the term “access,” “accessing”, and other
similar terms may include a variety of actions. For example,
accessing data may include obtaining the data, examining
the data, or retrieving the data. Providing access or provid-
ing data access may include providing confidentiality, integ-
rity, or availability regarding the data.

As used herein, the term “message” may include one or
more formats for communicating (e.g., transmitting or
receiving) information or data. A message may include a
machine-readable collection of information such as an
Extensible Markup Language (XML) document, fixed-field
message, comma-separated message, or another format. A
message may, in some implementations, include a signal
utilized to transmit one or more representations of informa-
tion or data.

US 12,531,722 B2

7

As used herein, the term “user interface” (also referred to
as an interactive user interface, a graphical user interface or
a Ul), may refer to a computer-provided interface including
data fields or other controls for receiving input signals or
providing electronic information or for providing informa-
tion to a user in response to received input signals. A user
interface may be implemented, in whole or in part, using
technologies such as hyper-text mark-up language (HTML),
aprogramming language, web services, or rich site summary
(RSS). In some implementations, a user interface may be
included in a stand-alone client software application con-
figured to communicate in accordance with one or more of
the aspects described.

As used herein, the term “modify” or “modifying” may
include several actions. For example, modifying data may
include adding additional data or changing the already-
existing data. As used herein, the term “obtain” or “obtain-
ing” may also include several types of action. For example,
obtaining data may include receiving data, generating data,
designating data as a logical object, or other actions.

As used herein, the term “data object” may include a
logical container for data. A data object may include an
instance of an object in a software application implemented
with an object-oriented programming language. A data
object may include data formatted in an electronic data
interchange (EDI) format, such as an extensible Markup
Language (XML) object, a JavaScript Object Notation
(JSON) object, or some other EDI-formatted object. A data
object may include one or more functions that may manipu-
late the data of the data object. For example, a data object
may include the functions or methods of an object in a
software application implemented with an object-oriented
programming language.

As used herein, the term “decentralized” means that at
least a portion of information or functionality is not con-
trolled by a single party. Instead, the decentralized informa-
tion or functionality is distributed among several parties
whose aggregate behavior affects the information or func-
tionality. One example of a decentralized technology is a
distributed ledger.

As used herein, the term “distributed ledger” may include
a data storage of transactions replicated across and synchro-
nized by multiple computers, called “nodes,” in communi-
cation with each other. The nodes may synchronize the data
of the distributed ledger, including which transactions are
added to the ledger and in what order, using a consensus
mechanism. The transactions may be cryptographically
secured such that once a transaction is added to the distrib-
uted ledger, the transaction cannot be later modified. Basic
encryption or cryptography principles-such a public key
infrastructure, digital signatures, and other cryptographic
technologies-underlie the application of distributed ledger
technology. When a user adds a distributed ledger transac-
tion, the user may digitally sign the transaction such that
other parties can verify that the transaction did, in fact,
originate from that user. One example implementation of a
distributed ledger includes a blockchain.

As used herein, the term “blockchain” may include a list
of blocks that are cryptographically linked together. Each
block may include one or more blockchain transactions.
Each block may include a cryptographic hash of the previ-
ous block in the blockchain. Each block may include a
timestamp, which may include the timestamp of when the
block was generated or when the block was added to the
blockchain. The blockchain may be maintained as replicated
and synchronized copies across a blockchain network of
nodes. The nodes may generate blocks and may determine

10

15

20

25

30

35

40

45

50

55

60

65

8

which transactions are included in which blocks and in what
order, and the nodes may synchronize their blockchain
copies via a consensus mechanism.

As used herein, a “token” may include a data asset
represented by data on a blockchain. A token may be
transferable between blockchain users via a transaction from
a first user to a second user. As used herein, a “tokenized”
asset may refer to an asset whose ownership interest is
represented by one or more tokens. Thus, a user who owns
a token may own at least a portion of the corresponding
asset. A token representing a tokenized asset may directly
represent ownership the asset or indirectly represent own-
ership of the asset. A token directly representing ownership
may include the token itself representing ownership of the
asset. A token indirectly representing ownership of the asset
may include the token representing ownership of some other
thing, which in turn may represent ownership of the asset. As
an example of a token indirectly representing ownership of
an asset, a token may represent ownership of at least part of
a business entity such as a corporation, and the corporation
may own a piece of real estate property. The token represents
ownership of the piece of real estate property even though it
is through ownership of the business entity.

As used herein, the term “transaction” may include a
blockchain transaction. A blockchain transaction may
include a source address, a destination address, an amount of
cryptocurrency or a token, a timestamp indicating when the
transaction was generated or other data. As used herein, a
“cryptocurrency wallet” may include data that may allow a
user of a blockchain network to send or receive cryptocur-
rency or tokens via the blockchain network. The cryptocur-
rency wallet may include one or more public keys, private
keys, or other cryptographic components used to generate
transactions. A cryptocurrency wallet may include a corre-
sponding cryptocurrency wallet address that may uniquely
identify the cryptocurrency wallet. As used herein, the terms
a first user “sending” a second user cryptocurrency, or a
token may include the first user generating a transaction
where the destination address is the cryptocurrency wallet
address of the second user. Hence, using a cryptocurrency
wallet may not mean that cryptocurrency or a token is
physically sent from, received at, or held in a cryptocurrency
wallet, but, instead, transactions of the blockchain network
indicate that the owner of the cryptocurrency wallet has
ownership of certain cryptocurrency or tokens.

Overview

FIG. 1A depicts one embodiment of a system 100. The
system 100 may include a system for data encryption or
decryption. The system 100 may include a computing device
102. As can be seen in FIG. 1B, the computing device 102
may include a setup module 104, a witness module 106, an
encryption module 108, or a decryption module 110. The
computing device 102 may include a data storage 112. The
system 100 may include other computing devices 120(1)-
(n). These computing devices 120(1)-(n) may each include
their own setup module 104, witness module 106, encryp-
tion module 108, decryption module 110, or data storage
112. The computing devices 102, 120(1)-(n) may be in data
communication with each other over a data network 130.

In one embodiment, the setup module 104 may set up a
logical environment on the computing device 102 for
encrypting data and decrypting data. This setup process may
include generating data used for encrypting or decrypting
data and storing the generated data in the data storage. The
encryption module 108 may encrypt data using the stored

US 12,531,722 B2

9

data. The decryption module 110 may decrypt data received
from other computing devices 120(1)-(n).

In some embodiments, the system 100 may encrypt data
without the use of certificate authorities, certificate chains of
trust, digital signatures, hashes, or asymmetric encryption in
the design of trust anchor architecture. Instead, the system
100 may utilize novel schemes and modules for creating
trust anchors based on context awareness, decision proce-
dures, or gateway proofs.

Generating the Trusted Setup

FIG. 2 depicts one embodiment of a method 200. The
method 200 may include a computer-implemented method
for generating or setting up a trusted setup on the computing
device 102 of the system 100 of FIG. 1. The method 200
may include generating a unique single user profile (USUP)
(step 202). The method 200 may include generating a first
binary matrix (step 204). The method 200 may include
mixing the first binary matrix based on the USUP to generate
a second binary matrix (step 206). The method 200 may
include generating trust anchor information (step 208). The
system 100 may then be able to use the trust anchor
information to generate one or more trust anchors in order to
encrypt or decrypt data. In some embodiments, the setup
module 104 may carry out one or more of the steps of the
method 200.

In one embodiment, the method 200 may include gener-
ating the unique single user profile (USUP) (step 202). The
setup module 104 may generate the USUP based on one or
more pieces of data. The pieces of data may include data
from the computing device 102. The data from the comput-
ing device 102 may include a username (e.g., a username of
the user on the computing device 102), a device name (e.g.,
the device name of the computing device 102 or the system
domain host name of the computing device 102), a user
profile directory location (e.g., the user’s user directory on
the computing device’s 102 file system), an executable file
directory location (e.g., the directory location of the execut-
able file of the setup module 104, the encryption module
108, or the decryption module 110), a device identifier (e.g.,
a media access control (MAC) address, a device ID, a
product ID, a serial number of a hardware component of the
computing device 102, an Internet Protocol (IP) address), or
some other identification number associated with the com-
puting device 102), or Basic Input/Output System (BIOS)
data. The pieces of data may include biometric data (e.g.,
fingerprint data, face recognition data, iris or retina data,
voice data associated with a user of the computing device
102), geolocation data, behavioral data, or other pieces of
data.

In one embodiment the USUP may include one or more
pieces of data concatenated together. For example, the
USUP may include a text string that includes a concatena-
tion of the username, the user profile directory, the device
name, the device MAC address, and the executable file
directory location with each piece of data separated by a
delimiting character. Thus, the USUP may include the text
string

jsmith;C:\Users\jsmith;Desktop-JSmith;

75:91:C:

\ProgramFiles\EncryptionProgram\encrypt.exe
where “jsmith” is the username, “C:\Users\jsmith” is the
user profile directory, “Desktop-JSmith” is the device name,
“D8:12:65:C5:75:917 is the MAC address, and
“C:\ProgramFiles\EncryptionProgram\encrypt.exe” is the
executable file directory, and where “;” is the delimiting
character.

D8:12:65:C5:

10

20

40

45

50

60

10

The method 200 may include generating the first binary
matrix (step 204). The first binary matrix may include an m
by n matrix where each cell includes a binary string. In some
embodiments, each of m and n may include natural numbers
greater than 0. In some embodiments, m and n may be the
same value or may be different values. In one embodiment,
the first binary matrix may include a 16 by 16 matrix.

In one or more embodiments, each cell of the first binary
matrix may include a binary string. The binary strings of
different cells may be different lengths, or the binary strings
of all the cells may be the same length. For example, each
cell of the first binary matrix may include an 8 bit binary
string. In one embodiment, the setup module 104 may use a
pseudorandom number generator to generate each binary
string in the first binary matrix.

In other embodiments, the setup module 104 may select
two decimal numbers, add the two numbers together, con-
vert the resulting sum to a binary number, and use this binary
number as the value for the first cell. The setup module 104
may then generate the values of the remaining cells of the
first binary matrix by increasing the value from the first cell
by a predetermined amount for each remaining cell. The
setup module 104 may proceed like this column by column
until all cells have a value. As an example, for a first binary
matrix of size 16 by 16, the setup module 104 may select the
decimal numbers 65 and 66, add them together (131) and use
the binary form of this number as the value of the first cell
(cell [1][1]). The setup module 104 may increase this value
by 1 (132) and use the binary form of 132 as the value for
the next cell in the column (cell [2][1]), use the binary form
of 133 as the value for the next cell in the column (cell
[3]1[1]), and so on until cell [16][16] has the value of the
binary form of 386. While in this example, the predeter-
mined amount by which each cell value is increased is 1, the
predetermined amount could be some other number, or
could be a sequence of numbers (e.g., the Fibonacci
sequence).

In one embodiment, the method 200 may include mixing
the first binary matrix based on the USUP to generate the
second binary matrix (step 206). In some embodiments, the
step 206 may be called “executing a matrix mixing opera-
tion.” Mixing the first binary matrix (step 206) may include
calculating the length of the USUP. The length of the USUP
may include the number of text characters in the USUP. The
number of text characters may or may not include the
delimiting character(s). The length of the USUP may be
represented as in binary form. For example, the length of the
USUP in the above example is 101, thus, the binary form of
101 is 1100101.

Mixing the first binary matrix (step 206) may include
iterating across the binary form of the length of the USUP
and transforming the first binary matrix based on whether
the current digit is a O or a 1. Transforming the first binary
matrix in response to the current digit being 1 may include
executing the Transformation Engine P+1 (described below)
on the first binary matrix. Transforming the first binary
matrix in response to the current digit being 0 may include
executing Transformation Engine P-1 on the first binary
matrix. Each time a Transformation Engine (either P+1 or
P-1) is executed on the first binary matrix, the first binary
matrix may be modified by the Transformation Engine such
that the subsequent Transformation Engine executes on the
modified first binary matrix. After all of the Transformation
Engine executions have occurred, the modified first binary
matrix is designated as the second binary matrix.

In one embodiment, the Transformation Engine P+1, the
Transformation Engine P-1, a Transformation Engine

US 12,531,722 B2

11

P-153, a Transformation Engine m(P+1), or a Transforma-
tion Engine m(P-1) may include a module, subroutine,
function, procedure, object-oriented software method, or
other sequence of program instructions. Each Transforma-
tion Engine may accept a matrix as input. Each Transfor-
mation Engine may execute a different entropy function on
the input matrix. The entropy functions may be based on
mathematical explanations verses traditional mathematical
algorithms. In some embodiments, a Transformation Engine
may employ a transformation mixing function based on
Claude Shannon’s principles of diffusion and confusion. In
some embodiments, any subset of two, three, four, or all five
of the Transformation Engines may be randomly selected
and used to perform an encryption operation. The subset of
two or more Transformation Engines may include an unor-
dered or ordered combination of Transformation Engines.
The encryption operation may be agnostic to the order in
which the transformation engines of the subset are applied.

In one embodiment, the Transformation Engine P+1 may
operate according to the following steps: (1) receive a matrix
as input; (2) execute permutations on the matrix by shuffling
the cells of the matrix; (3) employ cycles on one or more
subsets of the matrix, which may include, for each subset,
iteratively shufiling the cells of the subset; (4) execute steps
2 through 3 one or more times until the following condition
is satisfied: 2x=1=log,y=z7,*(P+1)+w,=w, mod (P+1)
where: (a) the initial state of the matrix is x=0; (b) P=total
number of discrete cells in the input matrix; (c) w,=y mod
(P+1); (d) z,=y/P+1; and (e) x is the number of times steps
2 through 3 are executed such that x>0=1 (mod P+1); and (5)
output Xx.

In one embodiment, the Transformation Engine P-1 may
operate according to the following steps: (1) receive a matrix
as input; (2) execute permutations on the matrix by shuffling
the cells of the matrix; (3) employ cycles on one or more
subsets of the matrix, which may include, for each subset,
iteratively shufiling the cells of the subset; (4) execute steps
2 through 3 one or more times until the following condition
is satisfied: 2x=1=log,y=7,*(P-1)+w,=w, mod (P-1)
where: (a) the initial state of the matrix is x=0; (b) P=total
number of discrete cells in the input matrix; (¢) w,=y mod
(P-1); (d) z,=y/P-1; and (e) x is the number of times steps
2 through 3 are executed such that x>0=1 (mod P-1); and (5)
output Xx.

In one or more embodiments, the Transformation Engine
P-153 may increase positional disorder and randomness of
the individual cells within a matrix. The Transformation
Engine P-153 may perform one or more string dislocation
operations on the matrix, which may include shifting the
contents of the cells of the matrix. In some embodiments,
string dislocation may include moving the contents of the
cells by a predetermined number, moving the contents
forward or backward in the matrix (e.g., left-to-right, row-
by-row; top-to-bottom, column-by-column; etc.). As an
example, the Transformation Engine P-153 may move the
contents of the cells by two spaces going from left-to-right
and row-by-row, and wrapping around to the beginning of
the matrix if the end of the matrix is reached.

In one embodiment, the Transformation Engine m(P+1)
may operate according to the following steps: (1) receive a
matrix as input; (2) execute permutations on the matrix by
shuffling the cells of the matrix; (3) employ cycles on one or
more subsets of the matrix, which may include, for each
subset, iteratively shuffling the cells of the subset; (4)
execute steps 2 through 3 one or more times until the
following condition is satisfied: m*=y=z*(P+1)+w=w mod
(P+1) and S=kB In Q when Q=x and w=1 for number of

20

35

40

45

12

entropy potentials (i.e., phase space-microstates) associated
with the number of discrete material cells for the system,
which is a mathematical explanation of the output during
each cycle as x increments by 1 where: (a) the initial state
of the matrix is x=0; (b) m=total number of rows in a matrix;
(c) n=total number of columns in a matrix; (d) P=total
number of discrete cells in an mxn matrix; (e) y=m"; (f)
x=log, y; (g) w=y mod (P+1); and (h) z=Math-Floor (y/P+1),
where z is a member of the set of whole numbers, and there
3 an x such that x>0 will return a final state identical to the
initial state after x number of P+1 cycles.

In one embodiment, the Transformation Engine m(P-1)
may operate according to the following steps: (1) receive a
matrix as input; (2) execute permutations on the matrix by
shuflling the cells of the matrix; (3) employ cycles on one or
more subsets of the matrix, which may include, for each
subset, iteratively shuffling the cells of the subset; (4)
execute steps 2 through 3 one or more times until the
following condition is satisfied: m™=y=z*(P-1)+w=w mod
(P-1) and S=kB In @ when Q=x and w=1 for number of
entropy potentials (i.e., phase space-microstates) associated
with the number of discrete material cells for the system,
which is a mathematical explanation of the output during
each cycle as x increments by 1 where: (a) the initial state
of the matrix is x=0; (b) m=total number of rows in a matrix;
(c) n=total number of columns in a matrix; (d) P=total
number of discrete cells in an mxn matrix; (e) y=m"; (f)
x=log, v; (g) w=y mod (P-1); and (h) z=Math-Floor (y/P-1),
where z is a member of the set of whole numbers, and there
3 an x such that x>0 will return a final state identical to the
initial state after x number of P-1 cycles.

In one embodiment, the method 200 may include gener-
ating trust anchor information (step 208). Generating the
trust anchor information (step 208) may include the setup
module 104 using a remainder generator. A remainder gen-
erator may accept a first number as an input. The remainder
generator may select a second number. The remainder
generator may select the second number using pseudoran-
dom number generation, accepting the second number as an
input, or using some other method. The remainder generator
may then calculate a third number where the third number is
the remainder of the first number divided by the second
number. In other words, the remainder generator may cal-
culate: (the first number) mod (the second number)=(the
third number). The output of the remainder generator may
include one or more value pairs of a second number and a
third number that satisfy (the first number) mod (the second
number)=(the third number). In some embodiments, the
remainder generator may be used by other modules of the
computing device 102 and at other times.

In one embodiment, generating the trust anchor informa-
tion (step 208) may include the setup module 104 selecting
a first number. The first number may include a number
greater than 0. The first number may include a whole
number. The first number may include the length of the
USUP, which may have been calculated as part of step 206.
Generating the trust anchor information (step 208) may
include the setup module 104 inputting the first number into
a remainder generator in order to obtain three (second
number, third number) pairs. Generating the trust anchor
information (step 208) may include storing the remainders
(the third numbers) produced as the outputs of the remainder
generator. Generating the trust anchor information (step
208) may include including the second numbers in the setup
module 104, the witness module 106, the encryption module
108, or the decryption module 110 for later use.

US 12,531,722 B2

13

As an example, the first number may include 101 (the
length of the USUP as calculated in step 206). Generating
the trust anchor information (step 208) may include the
setup module 104 inputting the number 101 (the first num-
ber) into the remainder generator. The remainder generator
may randomly select 6, 27, and 3 as the second numbers.
The remainder generator may calculate the remainders (the
third numbers) of 101 divided by 6, 27, and 3, respectively,
which may include calculating 101 mod 6=5, 101 mod
27=20, and 101 mod 3=2. The remainder generator may
output the following value pairs: (6, 5), (27, 20), and (3, 2).
The setup module 104 may store the remainders (in this
case, 5, 20, and 2) for later use and may include the values
6, 27, and 3 in the setup module 104, the witness module
106, the encryption module 108, or the decryption module
110 for later use.

In one embodiment, after step 206, the method 200 may
include generating one or more file directories. The file
directories may be located on the computing device 102
(e.g., in the data storage 112) or on a data storage in data
communication with the computing device 102. Each file
directory may include one or more files. Each file may
include trust anchor information and may be considered a
trust anchor. In one embodiment, the setup module 104 may
select a binary string from the second binary matrix to serve
as a file directory name of the one or more file directories.
In one embodiment, the setup module 104 may select a
binary string from the second binary matrix to serve as a file
name of the one or more files. In other embodiments, a file
directory name or file name may include a predetermined
text string, or a text string specified by the computing device
102 or a user of the computing device 102.

In one embodiment, the one or more file directories may
include seven file directories. The first file directory may
include two files. The first file may include decision proce-
dures used to encrypt the USUP to create a real-time binary
fingerprint. The second file may include decision procedures
to decrypt a user’s binary fingerprint (including a user of the
computing device 102 or a third-party’s binary fingerprint)
and compare USUPs in real time.

The second file directory may include two files. The first
file may include decision procedures to encrypt a group
policy, and the second file may include decision procedures
to encrypt document proper header information. The third
file directory may include twelve files. Each of the twelve
files may include a different matrix encryption value set. The
fourth file directory may include one file: a file that includes
decision procedures used to encrypt document proper file
analysis.

The fifth file directory may include two files. The first file
may include decision procedures to decrypt a group policy,
and the second file may include decision procedures to
decrypt document proper header information. The sixth file
directory may include twelve files. Each of the twelve files
may include a different matrix decryption value set. The
seventh file directory may include a single file: a file that
includes decision procedures used to decrypt document
proper file analysis.

Creating a Proof of Identity

In one embodiment, the setup module 104 may generate
data that provides identity and trust instead of acquiring such
data from a third party (e.g., in the form of a digital
certificate issued by a third party). FIG. 3 depicts one
embodiment of a method 300 for generating such identity-
and trust-providing data. The method 300 may include
generating a unique single user profile (USUP) (step 302).
The method 300 may include encrypting the USUP (step

10

15

20

25

30

35

40

45

50

55

60

65

14

304). The method 300 may include storing the encrypted
USUP as a binary fingerprint (step 306).

In one embodiment, generating the USUP (step 302) may
be similar to step 202 of the method 200 depicted in relation
to FIG. 2, discussed above. In some embodiments, the setup
module 104 may limit the number of characters in the USUP.
For example, the USUP may include a maximum character
limit of 140 characters. If the USUP’s length is longer than
the maximum character limit, the setup module 104 may
truncate the USUP to the maximum character limit. In some
embodiments, in response to the USUP having a character
length of less than the maximum character limit, the com-
puting device may pad the USUP until the USUP has a
character length of the maximum character limit.

In one or more embodiments, encrypting the USUP (step
304) may include encrypting the USUP according to the
method 900 of FIG. 9, discussed below. In such an embodi-
ment, the data to be encrypted of step 902 may include the
USUP, and the encryption value sets of step 904 may include
at least a portion of the trust anchor information generated
from the method 200 of FIG. 2, discussed above. The
encrypted USUP may represent a binary fingerprint. In some
embodiments, the binary fingerprint may have a character
length longer than the character length of the USUP. For
example, the binary fingerprint may be eight times longer.
The binary fingerprint may be x times longer where X is a
real number greater than 1. In some embodiments, the binary
fingerprint may include binary data. The binary data may
include a length of 1,120 binary digits.

In some embodiments, storing the binary fingerprint (step
306) may include storing the binary fingerprint in a binary
file. The binary file may include a file of the one or more files
of the one or more file directories discussed above in relation
to FIG. 2. The binary file may include a randomly selected
file.

In some embodiments, the computing device 102 may
transmit the binary fingerprint over a data network to
another computing device 120. The other computing device
120(1) may use the binary fingerprint, along with other data,
to decrypt messages from the computing device or other
data.

Ciphertext Architecture

In one embodiment, the computing device’s 102 encryp-
tion module 108 may encrypt data and send the encrypted
data to another computing device 120. The decryption
module 110 of the other computing device 120 may decrypt
the received encrypted data. In one embodiment, the
encrypted data may take the form a ciphertext. FIG. 4
depicts one embodiment of a ciphertext 400. The ciphertext
400 may include a blob of binary numbers. The ciphertext
400 may include a header 402. The ciphertext 400 may
include instructions 404. The ciphertext 400 may include a
body 406. As can be seen in FIG. 4, each of the header 402,
instructions 404, and body 406 may include binary data.

FIG. 5 depicts one embodiment of the ciphertext’s 400
header 402. In one embodiment, the header 402 may include
data that describes, in a machine-readable manner, a decryp-
tion policy. The decryption policy may include one or more
sets of permissions for the terms of decryption. The header
402 may include three policy classes: a group policy 502, an
entity policy 504, and a ciphertext policy 506. Each policy
502, 504, 506 may be embedded with certain security or
privacy conditions and may contribute to the overall access
control conditions for the ciphertext 400 body 406. In one
embodiment, the decryption module 110 of the computing
device 120 may process the header 402 and may grant access
to the body 406 in response to all conditions described in the

US 12,531,722 B2

15

policies 502, 504, 506 being met. If a condition of a policy
502, 504, 506 is not met, the decryption module 110 may
halt and may deny access to the body 406.

In one embodiment, the group policy 502 may define the
context associated with a group and the number of entities
in the group authorized to decrypt the ciphertext 400 body
406. During the trusted setup process described above in
relation to the method 200 of FIG. 2, the setup module 104
may establish the group policy 502 by an individual, group,
or organization that operates the computing device 102. The
setup module 104 may format the group policy 502 into a
single, plaintext string. The software may calculate the
length of the group policy 502 string and may present the
length as a decimal value. The setup module 104 may use the
length as the input to the remainder generator discussed
above in relation to step 208 to calculate the three remain-
ders and may convert each remainder to a binary value.
Calculating the three remainders may include using the same
second numbers as were selected during step 208 during the
setup process. The setup module 104 may store the group
policy 502 or the binary values in the first file of the second
file directory.

In one embodiment, the entity policy 504 may include the
binary fingerprint of each entity in the group. The entities in
the group may include the sender of the message and the
recipient(s) of the message. The computing device may
generate the entity policy 504 during the method 200.

In some embodiments, the ciphertext policy 506 may
include one or more unique identifiers. The one or more
unique identifiers may include two identifiers. The encryp-
tion module 108 may append the one or more unique
identifiers to the body 406. Although the one or more unique
identifiers may be appended to the body 406, they still may
be considered included in the ciphertext policy 506. The one
or more identifiers may act as watermarks.

In one embodiment, during the execution of the setup
process of the method 200, the setup module 104 may
generate the first unique identifier. The first unique identifier
may include a predetermined string of text. The setup
module 104 may generate the first unique identifier based on
input by the individual, group, or organization. The setup
module 104 may calculate the length of the first unique
identifier and use the length as the first number in the
remainder generator discussed above in relations to step 208
of the method 200. The remainder calculator may calculate
the three remainders, convert them to binary values, and
append them to the body 506. Calculating the three remain-
ders may include using the same second numbers as were
selected during step 208 during the setup process. In one
embodiment, the first unique identifier may authenticate, to
the receiving entity(ies), the identity of the sender of the
ciphertext 400.

In some embodiments, the second unique identifier may
include the length of the body 406 as a number of blocks. To
calculate the number of blocks, the encryption module 108
may convert the body 406 to binary format, retrieve the
values m and n from the files called “Bit Matrix P+1”
prepared by the witness module 106, generate a m by n
matrix, and calculate (the length of the body 406 in bits)
divided by (the size of the m by n matrix) rounded up the
nearest whole number. For example, m may include 32 and
n may include 128. Thus, the matrix may include a size of
4,096 (m multiplied by n). The length of the body in bits may
include 164,300. Thus, 164,300 divided by 4,096 may equal
40.112 and may be rounded up to 41. Thus, 41 would be the
length of the body 406 in as the number of blocks. The setup
module 104 may use the number of blocks as the first

10

15

20

25

30

35

40

45

50

55

60

65

16

number in the remainder generator discussed above in
relation to step 208 of the method 200. The remainder
generator may calculate the three remainders, convert them
to binary values, and append them to the body 406. Calcu-
lating the three remainders may include using the same
second numbers as were selected during step 208 during the
setup process. In some embodiments, the second unique
identifier may demonstrate, to the receiving entity(ies), the
integrity of the body 406. In some embodiments, the setup
module 104 may store the first or second unique identifiers
or their respective remainders in the data storage 112.

In one embodiment, the instructions 404 of the ciphertext
400 may include data that the decryption module 110 may
use to decrypt the ciphertext body 406. The details of such
data are discussed below in relation to step 910 of the
method 900 of FIG. 9. In one embodiment, as part of the
decryption process, the decryption module 110 may recreate
the file directory and file configuration that was created
during the setup process of the method 200 of FIG. 2. The
successful recreation of the configuration may verify the
integrity of each directory and file location. It may also
ensure that no deletions, edits, attacks, or movements of a
file directory or file has occurred, since the last use of the
modules 104-108. If the recreation of the file directories and
files fails, the decryption module 110 may halt.

In one embodiment, the ciphertext 400 body 406 may
include the encrypted message that was encrypted by the
encryption module 108. The encryption of the message is
discussed in detail below in relation to the method 900 of the
FIG. 9.

Witness Module

In some embodiments, the computing device 102 may
include a witness module 106. The witness module 106 may
generate data employed by the encryption module 108 in the
encryption method 700 of the FIG. 7, discussed below. The
witness module 106 may create a trusted segregation of
duties between the sending user and the recipient user. The
witness module 106 may help ensure that each of the sender
and the receiver expends a certain level of computational
effort to complete a proof of work associated with the
encryption/decryption processes. In some embodiments, the
sender and the recipient may have no knowledge of the inner
workings of the witness module 106. The witness module
106 may have no access to or knowledge of the plaintext
version of the body 406 or ciphertext 400. The sender may
not be able to encrypt plaintext without the encryption value
sets from the witness module 106, and the recipient may not
be able to decrypt the ciphertext 400 without the decryption
value sets from the sender.

In one embodiment, the encryption module 108 may
invoke the witness module 106 as part of the encryption
method 700. In response, the witness module 106 may
generate data to be used in the encryption method 700. The
data may include one or more encryption value sets. In one
embodiment, an encryption value set may include six val-
ues: a mixing scheme, a bit value table, a first matrix size
(indicated by the letter m), a second matrix size (indicated
by the letter n), an encryption decider, and a decryption
decider.

In one embodiment, each value of an encryption value set
may belong to one of two classes of values: pre-programmed
or decimal. A pre-programmed value may include a binary
value that has been pre-programmed into the witness module
106 (e.g., as volatile data included in the witness module 106
or in a configuration file of the witness module 106). A
decimal value may include a value generated by the witness
module 106 for the specific instance of running the encryp-

US 12,531,722 B2

17

tion method 700. In one embodiment, the mixing scheme
and the bit value table may be pre-programmed, and the
values m, n, the encryption deciders, and the decryption
deciders may be decimal. In some embodiments, the decimal
values may be ephemeral and may change each time the
encryption module 108 invokes the witness module 106. In
some embodiments, the witness module 106 may generate
the pre-programmed values during the setup process of the
method 200 of FIG. 2.

FIG. 6A depicts one embodiment of a data flow 600. The
data flow 600 may show how each value 602-612 of an
encryption value set 620 (in the example of FIG. 6A, the
“Character Matrix P+1” value set 620(1)) is included in the
encryption value set 620. For example, the two pre-pro-
grammed values (i.e., the mixing scheme 602 and the bit
value 604) may be provided by the setup module 104 or may
be retrieved from the trusted environment set up by the setup
module 104 in the method 200 of FIG. 2. The first matrix
size 606, the second matrix size 608, the encryption decider
610, and the decryption decider 612 may be provided by the
witness module 106 as discussed below. In some embodi-
ments, the set of encryption value sets 620 may include
fewer than six encryption value sets 620 or more than six
encryption value sets 620. For example, there may be one
encryption value set 620, two encryption value sets 620,
three encryption value sets 620, four encryption value sets
620, five encryption value sets 620, seven encryption value
sets 620, eight encryption value sets 620, nine encryption
value sets 620, ten encryption value sets 620, eleven encryp-
tion value sets 620, or twelve encryption value sets 620. In
some embodiments, the set of encryption value sets 620 may
include more than twelve encryption value sets 620.

In one embodiment, a mixing scheme 602 may include a
sequence of executions of the one or more Transformation
Engines discussed above (i.e., P+1, P-1,m(P+1), m(P-1),
and P-153). The witness module 106 may randomly gen-
erate the sequence. The witness module 106 randomly
generating the sequence may include the witness module
106 randomly selecting the length of the sequence (i.e., the
number of Transformation Engine executions) or the con-
tents of the sequence (i.e., for each slot in the sequence,
whether the slot will include an execution of the Transfor-
mation Engine P+1, P-1, m(P+1), m(P-1), or P-153).
However, in some embodiments, the sequence may include
a length of five, and each type of Transformation Engine
(P+1, P-1, m(P+1), m(P-1), and P-153) may be used only
once. As discussed above, a Transformation Engine may
accept a matrix as input, may transform the contents of that
matrix, and output a new matrix. In the mixing scheme 602,
the output matrix of a Transformation Engine may be used
as the input matrix to the subsequent Transformation Engine
until the sequence is complete. For example, the sequence
may be in a defined order where the Transformation Engines
are executed in the defined order, which may determine the
encryption output. The witness module 106 may generate
one or more mixing schemes 602 and may randomly select
one of the mixing schemes 602 as the output.

As an example, the witness module 106 may randomly
generate a mixing scheme 602 that includes the following
sequence: P-153, P-1, P+1. Thus, the Transformation
Engine P-153 may execute on the input matrix. The output
of the Transformation Engine P-153 may be used as the
input to the Transformation Engine P-1. The output of the
Transformation Engine P-1 may be used as the input to the
Transformation Engine P+1. The output of the Transforma-
tion Engine P+1 may be the output of the mixing scheme
602, and the mixing scheme 602 may halt.

10

15

20

25

30

35

40

45

50

55

60

65

18

In one embodiment, the witness module 106 may select a
bit value 604. The bit value 604 may include a four-bit
number. The bit value 604 may identify a bit value table. A
bit value table may include a 4 by 4 matrix whose cells
include the numbers O through 15 distributed throughout the
matrix. The setup module 104 may generate one or more bit
value tables during the setup process of the method 200 of
FIG. 2. The bit value tables may be included in the encryp-
tion module 108 or decryption module 110. Each bit value
table may be uniquely identified by a bit value 604. The
witness module 106 selecting a bit value 604 may include
the witness module 106 randomly selecting a four-bit num-
ber for inclusion in the encryption value set 620 as the bit
value 604.

As an example, a bit value table may include the follow-
ing matrix:

0111 0101 0010 1101
1111 1011 0100 0011
0001 1100 0000 1010
1000 0110 1001 1110

The bit value 604 that identifies this bit table may include
“0111” (because, for example, the first cell of the bit table is
“0111”). Other bit value tables may include the same values
(i.e., the numbers 0000 through 1111) but in different
locations in the bit table.

In one embodiment, one purpose of a bit table is to further
obfuscate binary data. This may include converting a four-
bit value into a different value based on the position in the
bit table where that four-bit value is found. For example,
using the table from the above example, in order to obfus-
cate the four-bit value 0101 (whose decimal value is 5), one
would find the cell bit matrix [5] (i.e., the sixth cell of the
table going from left-to-right, row-by-row) and use the value
in that cell (in this example, “10117”). In order to un-
obfuscate, the reverse process is used. For example, for the
obfuscated value “1001,” the position of that value is found
in the bit table. In the example bit value table above, “1001”
is in the cell bit matrix [14]), indicating that the un-
obfuscated value is “1110” (whose decimal value is 14).

In some embodiments, the witness module 106 may
generate one or more pairs of values (m, n) 606, 608 that will
serve as the dimensions for one or more matrices, where m
is an integer of the number of rows in a matrix and nis an
integer of the number of columns in a matrix. The witness
module 106 may generate each value m, n 606, 608 using
pseudorandom number generation. The witness module 106
may generate twelve pairs of m, n values 606, 608: (1) for
use during encryption: (a) a character matrix, (b) a nibble
matrix, and (c) a bit matrix; and (2) for use during decryp-
tion: (a) a bit matrix, (b) a nibble matrix, and (c) a character
matrix. In some embodiments, the m and n values 606, 608
in a given value pair can be (even X even), (even x odd), or
(odd x even). In some embodiments, the m and n values 606,
608 in a given pair may be (0odd x odd). At least one property,
such as a measure of randomness or unpredictability, of the
pair of values (m, n) 606, 608 may be evaluated, and
selection logic may be applied to the pair of values (m, n)
606, 608. The selection logic may be configured to accept or
reject the pair of values (m, n) 606, 608 based on at least one
predefined criterion. The predefined criteria may relate to the
complexity or unpredictability of a pair of values (m, n) and
be satisfied when the pair of values (m, n) meets a predefined
threshold for randomness or unpredictability. If the selection
logic is executed and the pair of values (m, n) 606, 608 is

US 12,531,722 B2

19

rejected, another pair of values (m, n) may be generated at
random and evaluated until a pair of values (m, n) is
accepted by the selection logic. Once a pair of values (m, n)
is accepted by the selection logic, the pair of values (m, n)
may be assigned as the pair of values (m, n) 606, 608 to use
as the dimensions for one or more matrices in the encryption
process.

In some embodiments, the witness module 106 may
generate one or more deciders. A decider may include an
integer. A decider may include a number of times a permu-
tation is executed. A decider may include an encryption
decider 610 or a decryption decider 612. An encryption
decider 610 may include the number of times a permutation
must be executed to move a one-way function forward from
the initiate state to an approximate midpoint in a mixing
scheme 602. In one embodiment, the witness module 106
may generate twelve encryption deciders 610, one for each
of: use of the Transformation Engine P+1 on the character
matrix, use of the Transformation P-1 on the character
matrix, use of Transformation Engine m(P+1) on the char-
acter matrix, use of Transformation Engine m(P-1) on the
character matrix, use of the Transformation Engine P+1 on
the nibble matrix, use of the Transformation Engine P-1 on
the nibble matrix, use of Transformation Engine m(P+1) on
the nibble matrix, use of Transformation Engine m (P-1) on
the nibble matrix, use of the Transformation Engine P+1 on
the bit matrix, use of the Transformation Engine P-1 on the
bit matrix, use of Transformation Engine m(P+1) on the bit
matrix, or use of Transformation Engine m(P-1) on the bit
matrix.

Similarly, in some embodiments, a decryption decider 612
may include a number of times a permutation must be
executed to move a one-way function forward from the
approximate midpoint to a final state that is identical to the
initial state in the mixing scheme 602. In one embodiment,
the witness module 106 may generate twelve decryption
deciders 612, one for each of: use of the Transformation
Engine P+1 on the bit matrix, use of the Transformation P-1
on the bit matrix, use of Transformation Engine m (P+1) on
the bit matrix, use of Transformation Engine m(P-1) on the
bit matrix, use of the Transformation Engine P+1 on the
nibble matrix, use of the Transformation Engine P-1 on the
nibble matrix, use of Transformation Engine m(P+1) on the
nibble matrix, use of Transformation Engine m(P-1) on the
nibble matrix, use of the Transformation Engine P+1 on the
character matrix, use of the Transformation Engine P-1 on
the character matrix, use of Transformation Engine m(P+1)
on the character matrix, or use of Transformation Engine
m(P-1) on the character matrix.

As can be seen in FIG. 6B, in one embodiment, the
witness module 106 may generate twelve different encryp-
tion value sets 620(1)-(12) for the encryption method 700.
The twelve encryption value sets 620 may include Character
Matrix P+1 620(1), Character Matrix P-1 620(2), Character
Matrix m(P+1) 620(3), Character Matrix m(P-1) 620(4),
Nibble Matrix P+1 620(5), Nibble Matrix P-1 620(6),
Nibble Matrix m(P+1) 620(7), Nibble Matrix m(P-1) 620
(8), Bit Matrix P+1 620(9), Bit Matrix P-1 620(10), Bit
Matrix m (P+1) 620(11), and Bit Matrix m(P-1) 620(12).

In one embodiment, the witness module 106 may store the
twelve encryption value sets 620 in the data storage 112. In
one embodiment, each encryption value set 620 may be
stored as a file, such as a text file. The witness module 106
may send the twelve text files to the encryption module 108
for use in the encryption method 700 of FIG. 7.

In another embodiment, the witness module 106 may be
distributed to one or more third-party computing devices to

10

15

20

25

30

35

40

45

50

55

60

65

20

generate the data employed by the encryption module 108
for use in the encryption method 700 of FIG. 7. The
third-party computing devices may each enable users (e.g.,
via a computing device and Internet connection) to request
and receive an encryption value set of unique integers from
a third party associated with a third-party computing device.
The third-party computing devices may generate the data for
use in encryption, which may include one or more of a
mixing scheme (i.e., the mixing scheme 602), a bit value
(i.e., the bit value 604), one or more pairs of integer values
(m, n) to serve as the dimensions for the one or more
matrices (i.e., the pair of values (m, n) 606, 608 accepted by
the selection logic), where the letter m indicates a first
matrix size (e.g., the number of rows in a matrix) and the
letter n indicates a second matrix size (e.g., the number of
columns in a matrix), an encryption decider (i.e., the encryp-
tion decider 610), or a decryption decider (i.e., the decryp-
tion decider 612). This data, when generated by a third-party
computing device, may be used by that third-party comput-
ing device to generate one or more encryption value sets,
each encryption value set including unique integers based on
at least part of the generated data (i.e., a unique mixing
scheme, bit value, pair of m, n values, encryption decider,
decryption decider). For example, a user, via a user com-
puting device, may send a request to a third-party computing
device for an encryption value set and the third-party
computing device may generate an encryption value set in
response and then send the encryption value set to the user
computing device over a network (e.g., the Internet) for the
user to employ in performing the encryption method 700. In
another example, a user, via a user computing device, may
send a request for at least one of the generated encryption
value sets to a third-party computing device and the third-
party computing device may send a response with an
encryption value set to the user computing device over a
network (e.g., the Internet) for use in performing the encryp-
tion method 700. In some embodiments, the user computing
device may generate supplementary data, such as a bit value,
a mixing scheme, a pair of integer values (m, n) representing
dimensions of a matrix for encrypting data, an encryption
decider, and/or a decryption decider, when such data is not
included in the encryption value set received from the
third-party computing device. For example, Party A (e.g.,
third-party computing device) may generate an encryption
value set with the bit value and mixing scheme and send the
encryption value set to Party B, and Party B (e.g., user
computing device) may generate the pair of m, n values, the
encryption decider, and the decryption decider.
Encryption and Decryption

FIG. 7 depicts one embodiment of a method 700. The
method 700 may include an encryption method whereby the
encryption module 108 may encrypt data to generate a
ciphertext 400. The method 700 may include generating the
group policy 502 (step 702). The method 700 may include
generating the entity policy 504 (step 704). The method 700
may include generating the ciphertext policy 506 (step 706).
The method 700 may include generating the instructions 404
(step 708). The method 700 may include encrypting the data
(step 710). The method 700 may include compiling the
ciphertext 400 from the results of steps 702-710 (step 712).
In one embodiment, the encryption module 108 may per-
form one or more of the steps 702-712 of the method 700.

In one embodiment, generating the group policy 502 (step
702) may include the encryption module 108 retrieving the
group policy 502 from the data storage 112 (e.g., from the
first file of the second file directory). The group policy 502
may include a plaintext string. The encryption module 108

US 12,531,722 B2

21

may retrieve the remainders stored with the group policy
502 or may calculate the remainders using the remainder
generator discussed above in relation to step 208 of the
method 200. The encryption module 108 may append the
remainders to the group policy 502.

In one embodiment, generating the entity policy 504 (step
704) may include the encryption module 108 retrieving or
generating the binary fingerprint of the user of the comput-
ing device 102. Generating the entity policy 504 (step 704)
may include the encryption module requesting a copy of the
binary fingerprint(s) from the user(s) of the other computing
device(s) 120(1)-(n) who will receive the ciphertext 400. In
some embodiments, generating the entity policy 504 (step
704) may include the encryption module 108 self-authenti-
cating its own binary fingerprint. Generating the entity
policy 504 (step 704) may include creating the entity policy
504 to include the user of the computing devices’ 102 binary
fingerprint and the binary fingerprint(s) of the recipient(s).

In one embodiment, the encryption module 108 self-
authenticating may include the encryption module 108 (1)
regenerating the user’s USUP in the same manner as step
202 of the method 200; (2) retrieving the user’s USUP
generated during the step 202 of the method 200, which may
be stored in the first file of the first file directory set up
during the method 200; and (3) retrieving a copy of the
user’s binary fingerprint from another source and deriving
the USUP from the binary fingerprint. The other source may
include another user (e.g., a user of another computing
device 120). The other user may have sent a copy of the first
user’s binary fingerprint in response to a request from the
first user. The other user may have sent a copy of the first
user’s binary fingerprint in the entity policy 504 of the
header 402 of a ciphertext 400. The other source may
include some other third-party source (e.g., the third-party
computing device 1302 of FIG. 13, discussed below). The
encryption module 108 may determine whether all three
USUPs match. In response to one of the USUPs not match-
ing, the encryption module 108 may halt the encryption
method 700. In some embodiments, in response to the
USUPs not matching, the encryption module 108 may
revoke the USUP stored in the first file of the first file
directory.

In one embodiment, generating the ciphertext policy 506
(step 706) may include the encryption module 108 retrieving
the first unique identifier discussed above in relation to the
ciphertext policy 506 from the data storage 112. Generating
the ciphertext policy 506 (step 706) may include the encryp-
tion module 108 generating the second unique identifier
using the process discussed above in relation to the cipher-
text policy 506. Certain portions of generating the ciphertext
policy 506 (step 706) may occur after the encryption of the
data (step 710) (e.g., generating the second unique identifier
since the second unique identifier may be calculated from
the encrypted body 406). In some embodiments, the encryp-
tion module 108 may also retrieve the respective remainders
associated with the first or second unique identifiers. In some
embodiments, the encryption module 108 may generate the
first or second unique identifiers and then calculate their
respective remainders using the remainder generator dis-
cussed above in relation to step 208 of the method 200.

In one embodiment, generating the instructions 404 (step
708) may include the encryption module 108 retrieving one
or more files from the data storage 112 to generate the
instructions 404. In some embodiments, certain portions of
the step 708 may occur after the encryption of the data (step
710). For example, retrieving one or more files may include

10

15

20

25

30

35

40

45

50

55

60

22

retrieving files that include the decryption values sets pre-
pared during step 910 of the method 900 of FIG. 9, discussed
below.

In one embodiment, encrypting the data (step 710) may
include the encryption module 108 receiving the data to be
encrypted and encrypting the data to generate the body 406.
Details of the data encryption of the body 406 are discussed
further below in relation to the method 900 of FIG. 9. In one
embodiment, compiling the ciphertext 400 (step 712) may
include the encryption module 108 generating the header
402 from the group policy 502, entity policy 504, and
ciphertext policy 506 generated in steps 702-706 and includ-
ing it as the header 402 of the ciphertext 400. Compiling the
ciphertext 400 (step 712) may include the encryption mod-
ule 108 including the instructions 404 generated in step 708
as the instructions 404 of the ciphertext 400. Compiling the
ciphertext 400 (step 712) may include the encryption mod-
ule 108 including the body 406 generated in step 710 as the
body 406 of the ciphertext 400.

FIG. 8 depicts one embodiment of a method 800. The
method 800 may include a decryption method whereby the
decryption module 110 may decrypt a ciphertext 400. The
method 800 may include decrypting the group policy 502
(step 802). The method 800 may include decrypting the
entity policy 504 (step 804). The method 800 may include
decrypting the ciphertext policy 506 (step 806). The method
800 may include decrypting the instructions 404 (step 808).
The method 800 may include decrypting the body 406 (step
810).

In one embodiment, the decryption module 110 may
retrieve the three binary values from the group policy 502 of
the header 402 of the ciphertext 400. The decryption module
110 may execute a remainder generator discussed above in
relation to step 208 of the method 200 to calculate a
remainder for each of the three binary values. The decryp-
tion module 110 may convert the remainders to a decimal
value that represents the length of the group policy 502
plaintext string. The decryption module 110 may confirm
that the decimal value matches the length of the group policy
502. The decryption module 110 may confirm that the group
policy 502 from the ciphertext 400 matches the group policy
502 stored on the receiving computing device 120. If they do
not match or if the length is different than the decimal value,
the decryption module 110 may halt the decryption method
800. If they do match, the decryption module 110 may
proceed to step 804.

In one embodiment, decrypting the entity policy 504 (step
804) may include the decryption module 110 retrieving the
binary fingerprints from the entity policy 504, identifying
the recipient user’s binary fingerprint, and decrypting the
binary fingerprint to confirm that it matches the USUP of the
decrypting user. Decrypting the entity policy 504 (step 804)
may include the decryption module 110 executing a self-
authentication method on the binary fingerprints, described
further below. In response to the decrypted USUP matching
the USUP of the decrypting user (and, in some embodi-
ments, the self-authenticating method confirming the
authenticity of the binary fingerprints), the decryption mod-
ule 110 may continue to step 806. In response to USUPs not
matching (or in response to the self-authenticating method
failing), the decryption module 110 may halt the decryption
method 800.

In one embodiment, the decryption module 110 self-
authenticating may include the decryption module 110 (1)
regenerating the user’s USUP in the same manner as step
202 of the method 200; (2) retrieving the user’s USUP
generated during the step 202 of the method 200, which may

US 12,531,722 B2

23

be stored in the first file of the first file directory set up
during the method 200; and (3) retrieving a copy of the
USUP from the user’s binary fingerprint of the entity policy
504 of the ciphertext’s 400 header 402. The decryption
module 110 may determine whether all three USUPs match.
In response to one of the USUPs not matching, the decryp-
tion module 110 may halt the decryption method 800. In
some embodiments, the decryption module 110 may revoke
the USUP stored in the first file of the first file directory.

In one embodiment, decrypting the ciphertext policy 506
(step 806) may include the decryption module 110 retrieving
the three binary values appended to the ciphertext body 406,
which may represent the first unique identifier. The decryp-
tion module 110 may use the three binary values as inputs to
three separate executions of a remainder generator discussed
above in relation to step 208 of the method 200 to calculate
a remainder for each binary value. The decryption module
110 may convert the three remainders to a decimal value,
which may represent the length of the first unique identifier.
The decryption module 110 may compare the received
ciphertext policy 506 plaintext string and may compare it to
the plaintext string stored on the recipient computing device
102. The decryption module 110 may confirm that the
decimal value matches the length of the ciphertext policy
506. In response to the ciphertext policies 506 not matching
or the length not matching the decimal value, the decryption
module 110 may halt the method 800.

Otherwise, the decryption module 110 may continue by
retrieving the three binary values appended to the ciphertext
body 406 that represent the second unique identifier. The
decryption module 110 may use the three binary values as
input to three different executions of a remainder generator
discussed above in relation to step 208 of the method 200 to
calculate a remainder for each binary value and convert
them to a decimal value. The decryption module 110 may
calculate the number of total blocks in the ciphertext 400 and
compares the result to the decimal value. If the decimal
values are equal, the decryption module 110 may proceed to
step 808. Otherwise, the decryption module 110 may halt the
method 800.

In one embodiment, decrypting the instructions 404 (step
808) may include the decryption module 110 retrieving each
decryption value set in the instructions 404. The decryption
module 110 may process the decryption value sets sequen-
tially. In response to the decryption module 110 failing to
process a decryption value set, the decryption module 110
may halt the method 800. Otherwise, the decryption module
110 may continue and may decrypt the ciphertext 400 body
406 (step 810).

Ciphertext Body Encryption

FIG. 9 depicts one embodiment of a method 900. The
method 900 may include a method to encrypt the data in
order to generate the body 406 of the ciphertext 400. The
encryption module 108 may carry out one or more steps of
the method 900. In some embodiments, the step of encrypt-
ing the data (step 710) of the method 700 may include one
or more steps of the method 900.

The method 900 may include receiving the data to be
encrypted (step 902). The method 900 may include retriev-
ing the encryption value sets 620(step 904). The method 900
may include generating one or more character matrices (step
906). The method 900 may include executing one or more
transformations on the one or more character matrices (step
908). The method 900 may include preparing the decryption
value sets (step 910).

In one embodiment, the method 900 may include receiv-
ing the data to be encrypted (step 902). The data to be

40

45

50

65

24

encrypted may sometimes be known as the “plaintext.” The
data to be encrypted may include data received from a UI of
a software application executing on the computing device
102. The software application may include the encryption
module or may include some other software. The data to be
encrypted may include a file, for example, a file stored in the
data storage 112. The data to be encrypted may include text
data, binary data, or data in some other format. In some
embodiments, the data to be encrypted may include a single
text string.

In one or more embodiments, the method 900 may include
retrieving the encryption value sets 620(step 904). The
encryption value data sets may include at least one encryp-
tion value data set. The encryption value sets 620 may
include the encryption value sets 620 generated by the
witness module 106, as discussed above. Retrieving the
encryption value sets 620(step 904) may include retrieving
the encryption value sets 620 from one or more files stored
in the data storage 112 or from some other data storage. In
some embodiments, the witness module 106 may read the
encryption value sets 620 from the data storage 112 and
provide the encryption value sets 620 to the encryption
module 108.

In one embodiment, the method 900 may include gener-
ating one or more character matrices (step 906). The one or
more character matrices may include two matrices: a first
character matrix and a second character matrix. The first
character matrix may be size m, where m is the value m 606
from the “Character Matrix P+1” encryption value set
620(1). The second character matrix may be size n, where n
is the value n 608 from the “Character Matrix P+1” encryp-
tion value set 620(1). The characters of the data to be
encrypted may be loaded into the first and second matrices,
row by row and adding padding if not all of the matrix cells
are filled by the characters. In some embodiments, the
encryption module 108 may add padding to the data to be
encrypted.

In one or more embodiments, the method 900 may include
executing one or more transformations on the one or more
character matrices (step 908). In some embodiments, the one
or more transformations may include a first transformation,
a second transformation, and a third transformation. The
encryption module 108 may take the output of a transfor-
mation and may use it as input to a subsequent transforma-
tion.

In one embodiment, the first transformation may include
a first cycle. The first cycle may include the encryption
module 108 taking the first and second character matrices
and running a character mixing scheme 602 on each char-
acter matrix. The character mixing 602 scheme may include
the mixing scheme 602 from the “Character Matrix P+1”
encryption value set 620(1). The first cycle may then include
the encryption module 108 inputting the mixed first and
second character matrices into the Transformation Engine
P+1 and running the Transformation Engine P+1 the number
of times equal to the encryption decider 610 from that
encryption value set 620(1).

In one embodiment, the first transformation may include
a second cycle. The second cycle may include the encryption
module 108 taking the first and second character matrices
(after they have been through the first cycle) and running a
second character mixing scheme 602 on the first and second
character matrices. The second character mixing scheme
602 may include the mixing scheme 602 from the “Char-
acter Matrix P-1" encryption value set 620(2). The second
cycle may include the encryption module 108 inputting the
encryption decider 610 from that encryption value set 620(2)

US 12,531,722 B2

25

into the Transformation Engine P-1 and using the Trans-
formation Engine P-1 on the mixed first and second char-
acter matrices.

In one embodiment, the first transformation may include
a third cycle. The third cycle may include the encryption
module 108 taking the first and second character matrices
(after they have been through the second cycle) and running
a third character mixing scheme 602 on the first and second
character matrices. The third character mixing scheme 602
may include the mixing scheme value from the “Character
Matrix m(P+1)” encryption value set 620(3). The third cycle
may include the encryption module 108 inputting the
encryption decider 610 from that encryption value set 620(3)
into the Transformation Engine m(P+1) and using the Trans-
formation Engine m(P+1) on the mixed first and second
character matrices.

In one embodiment, the first transformation may include
a fourth cycle. The fourth cycle may include the encryption
module 108 taking the first and second character matrices
(after they have been through the third cycle) and running a
fourth character mixing scheme 602 on the first and second
character matrices. The fourth character mixing scheme 602
may include the mixing scheme value from the “Character
Matrix m(P-1)" encryption value set 620(4). The fourth
cycle may include the encryption module 108 inputting the
encryption decider 610 from that encryption value set 620(4)
into the Transformation Engine m(P-1) and using the Trans-
formation Engine m(P-1) on the mixed first and second
character matrices.

In one embodiment, the first transformation may include
a fifth cycle. The fifth cycle may include the encryption
module 108 running the Transformation Engine P-153 on
the first and second character matrices (after they have been
through the fourth cycle). The first transformation may then
include splitting each character in each of the first and
second character matrices into two nibbles in order to
generate a first nibble matrix and a second nibble matrix.

In one embodiment, the encryption module 108 may use
the first and second nibble matrices as input to the second
transformation. The second transformation may include a
first cycle. The first cycle may include the encryption
module 108 running a nibble mixing scheme 602 on each
nibble matrix. The nibble mixing scheme 602 may include
the mixing scheme 602 from the “Nibble Matrix P+1”
encryption value set 620(5). The first cycle may include the
encryption module 108 inputting the encryption decider 610
from that encryption value set 620(5) into the Transforma-
tion Engine P+1 and using the Transformation Engine P+1
on the mixed first and second nibble matrices.

In one embodiment, the second transformation may
include a second cycle. The second cycle may include the
encryption module 108 taking the first and second nibble
matrices (after they have been through the first cycle) and
running a nibble mixing 602 scheme on the first and second
nibble matrices. The nibble mixing scheme 602 may include
the mixing scheme 602 from the “Nibble Matrix P-1”
encryption value set 620(6). The second cycle may include
the encryption module 108 inputting the encryption decider
610 from that encryption value set 620(6) into the Trans-
formation Engine P-1 and using the Transformation Engine
P-1 on the mixed first and second nibble matrices.

In one embodiment, the second transformation may
include a third cycle. The third cycle may include the
encryption module 108 taking the first and second nibble
matrices (after they have been through the second cycle) and
running a third nibble mixing scheme 602 on the first and
second nibble matrices. The third nibble mixing scheme 602

5

10

20

25

30

40

45

50

55

60

26

may include the mixing scheme value from the “Nibble
Matrix m(P+1)” encryption value set 620(7). The third cycle
may include the encryption module 108 inputting the
encryption decider 610 from that encryption value set 620(7)
into the Transformation Engine m(P+1) and using the Trans-
formation Engine m(P+1) on the mixed first and second
nibble matrices.

In one embodiment, the second transformation may
include a fourth cycle. The fourth cycle may include the
encryption module 108 taking the first and second nibble
matrices (after they have been through the third cycle) and
running a fourth nibble mixing scheme 602 on the first and
second nibble matrices. The fourth nibble mixing scheme
602 may include the mixing scheme value from the “Nibble
Matrix m(P-1)" encryption value set 620(8). The fourth
cycle may include the encryption module 108 inputting the
encryption decider 610 from that encryption value set 620(8)
into the Transformation Engine m(P-1) and using the Trans-
formation Engine m(P-1) on the mixed first and second
nibble matrices.

In one embodiment, the second transformation may
include a fifth cycle. The fifth cycle may include the
encryption module 108 running the Transformation Engine
P-153 on the first and second nibble matrices (after they
have been through the fourth cycle). The second transfor-
mation may include splitting each nibble in each of the first
and second character matrices into four bits in order to
generate a first bit matrix and a second bit matrix.

In one embodiment, the encryption module 108 may use
the first and second bit matrices as input to the third
transformation. The third transformation may include a first
cycle. The first cycle may include the encryption module
108 retrieving the bit value 604 from the “Bit Matrix P+1”
encryption value set 620(9) and retrieving the corresponding
bit value table from the encryption module 108. The encryp-
tion module 108 may use the bit value table to convert each
cell in the first and second bit matrices into a different
four-bit number according to the bit value table. The first
cycle may include the encryption module 108 running a bit
matrix mixing scheme 602 on each bit matrix. The bit
mixing scheme 602 may include the mixing scheme value
from the “Bit Matrix P+1” encryption value set 620(9). The
first cycle may include the encryption module 108 inputting
the encryption decider 610 from that encryption value set
620(9) into the Transformation Engine P+1 and using the
Transformation Engine P+1 on the mixed first and second bit
matrices.

In one embodiment, the third transformation may include
a second cycle. The second cycle may include the encryption
module 108 retrieving the bit value 604 from the “Bit Matrix
P-1” encryption value set 620(10) and retrieving the corre-
sponding bit value table from the encryption module 108.
The encryption module 108 may use the bit value table to
convert each cell in the first and second bit matrices into a
different four-bit number according to the bit value table.
The second cycle may include the encryption module 108
taking the first and second bit matrices (after they have been
through the first cycle) and running a bit mixing scheme 602
on the first and second bit matrices. The bit mixing scheme
602 may include the mixing scheme value from the “Bit
Matrix P-1” encryption value set 620(10). The second cycle
may include the encryption module 108 inputting the
encryption decider 610 from that encryption value set 620
(10) into the Transformation Engine P-1 and using the
Transformation Engine P-1 on the mixed first and second bit
matrices.

US 12,531,722 B2

27

In one embodiment, the third transformation may include
a third cycle. The third cycle may include the encryption
module 108 taking the first and second bit matrices (after
they have been through the second cycle) and running a third
bit mixing scheme 602 on the first and second bit matrices.
The third bit mixing scheme 602 may include the mixing
scheme value from the “Bit Matrix m(P+1)” encryption
value set 620(11). The third cycle may include the encryp-
tion module 108 inputting the encryption decider 610 from
that encryption value set 620(11) into the Transformation
Engine m(P+1) and using the Transformation Engine m(P+
1) on the mixed first and second bit matrices.

In one embodiment, the third transformation may include
a fourth cycle. The fourth cycle may include the encryption
module 108 taking the first and second bit matrices (after
they have been through the third cycle) and running a third
bit mixing scheme 602 on the first and second nibble
matrices. The fourth bit mixing scheme 602 may include the
mixing scheme value from the “Bit Matrix m(P-1)" encryp-
tion value set 620(12). The fourth cycle may include the
encryption module 108 inputting the encryption decider 610
from that encryption value set 620(12) into the Transforma-
tion Engine m(P-1) and using the Transformation Engine
m(P-1) on the mixed first and second bit matrices.

In one embodiment, the third transformation may include
a fifth cycle. The fifth cycle may include the encryption
module 108 running the Transformation Engine P-153 on
the first and second bit matrices (after they have been
through the fourth cycle). At this point, the encryption of the
plaintext may be complete. The encryption module 108 may
include the encrypted plaintext as part of the body 406 of the
ciphertext 400.

In some embodiments, the method 900 may include
preparing the decryption value sets (step 910). The decryp-
tion value sets may include at least one decryption value set.
Preparing the decryption value sets (step 910) may include
the encryption module 108 copying the encryption value sets
620 and designating these copies as the decryption value
sets. The encryption module 108 may then delete the encryp-
tion decider 610 from the decryption value sets so that each
decryption value set includes a mixing scheme 602, bit value
604, m 606, n 608, and decryption decider 612. In one
embodiment, preparing the decryption value sets (step 910)
may include the encryption module 108 using a remainder
generator (discussed above in relation to step 208 of the
method 200) to calculate three remainders for each m 606,
n 608, and decryption decider 612 in each decryption value
set. The decryption value sets may now be complete. The
encryption module 108 may then include the decryption
value sets as part of the ciphertext instructions 404 of the
ciphertext 400.

FIG. 10A depicts one embodiment of a dataflow 1000.
The data flow 1000 may show how the values mixing
scheme 602, bit value 604, first matrix size 606, second
matrix size 608, and decryption decider 612 of an encryption
value set 620 (in the example of FIG. 10A, the “Character
Matrix P+1” encryption value set 620(1)) is included in the
decryption value set 1020 (in the example of FIG. 10A, the
“Character Matrix P+1” decryption value set). The values
mixing scheme 602 and bit value 604 are included in the
decryption value set 1020. The values m 606, n 608, and
decryption decider 612 are also included, but their remain-
ders 1004 are also calculated by the remainder generator
1002 and included in the decryption value set 1020. FIG.
10B depicts a diagram indicating how each decryption value
set 1020(1)-(12) is derived from its corresponding encryp-
tion value set 620(1)-(12) of FIG. 6B.

10

15

20

25

30

35

40

45

50

55

60

65

28

In one embodiment, the number of decryption value sets
1020 may match the number of encryption value sets 620. In
other embodiments, the number encryption value sets 620
and decryption value sets 1020 may not match. In some
embodiments, the set of decryption value sets 1020 may
include fewer than six decryption value sets 1020 or more
than six decryption value sets 1020. For example, there may
be one decryption value set 1020, two decryption value sets
1020, three decryption value sets 1020, four decryption
value sets 1020, five decryption value sets 1020, seven
decryption value sets 1020, eight decryption value sets 1020,
nine decryption value sets 1020, ten decryption value sets
1020, eleven decryption value sets 1020, or twelve decryp-
tion value sets 1020. In some embodiments, the set of
decryption value sets 1020 may include more than twelve
decryption value sets 1020.

Ciphertext Body Decryption

FIG. 11 depicts one embodiment of a method 1100. The
method 1100 may include a method to decrypt the body 406
of the ciphertext 400. The decryption module 110 may carry
out one or more steps of the method 1100. In some embodi-
ments, the step of decrypting the body 406 (step 810) of the
method 800 may include one or more steps of the method
1100.

The method 1100 may include receiving the ciphertext
400 body 406 (step 1102). The method 1100 may include
retrieving the decryption value sets 1020(step 1104). The
method 1100 may include executing one or more transfor-
mations on the body 406 (step 1106).

In one embodiment, receiving the ciphertext 400 body
406 (step 1102) may include receiving the binary string of
the body 406 of the ciphertext 400 sent by the sending
computing device 102. The body 406 may have been
encrypted according to the method 900 of FIG. 9, discussed
above. Receiving the ciphertext 400 body 406 (step 1102)
may include formatting the body 406 into a first and second
bit matrix where each cell of each matrix includes a four-bit
number. For example, the first four bits of the body 406 will
be placed into the first cell of the first matrix, the second four
bits of the body 406 will be placed into the second cell of the
first matrix, and so on until the entire body 406 has been
placed into the first and second matrices.

In one embodiment, retrieving the decryption value sets
1020(step 1104) may include retrieving the decryption value
sets 1020 that the decryption module 110 decrypted as part
of the step 808 of the method 800. The decryption module
110 may use the decryption value sets 1020 to decrypt the
body 406.

In some embodiments, executing the one or more trans-
formations on the body 406 (step 1106) may include execut-
ing a first transformation, a second transformation, and a
third transformation on the body 406. The decryption mod-
ule 110 may take the output of a transformation and may use
it as input to a subsequent transformation.

In one embodiment, the first transformation may include
a first cycle. The first cycle may include the decryption
module 110 running the Transformation Engine P-153 on
the first and second bit matrices of the body 406.

In one embodiment, the first transformation may include
a second cycle. The second cycle may include the decryption
module 110 retrieving the bit value 604 from the “Bit Matrix
m(P-1)” decryption value set 1020(12) and retrieving the
corresponding bit value table from the decryption module
110. The decryption module 110 may use the bit value table
to convert each cell in the first and second bit matrices (after
they have been through the first cycle) into a different
four-bit number according to the bit value table. The second

US 12,531,722 B2

29

cycle may include the decryption module 110 taking the first
and second bit matrices (after they have been through the
first cycle) and running a bit mixing scheme 602 on the first
and second bit matrices. The bit mixing scheme 602 may
include the bit mixing scheme 602 included in the “Bit
Matrix m(P-1)" decryption value set 1020(12). The second
cycle may include the decryption module 110 inputting the
decryption decider 612 from the decryption value set 1020
(12) into the Transformation Engine m(P-1) and using the
Transformation Engine m(P-1) on the mixed first and sec-
ond bit matrices.

In one embodiment, the first transformation may include
a third cycle. The third cycle may include the decryption
module 110 retrieving the bit value 604 from the “Bit Matrix
m(P+1)” decryption value set 1020(11) and retrieving the
corresponding bit value table from the decryption module
110. The decryption module 110 may use the bit value table
to convert each cell in the first and second bit matrices (after
they have been through the second cycle) into a different
four-bit number according to the bit value table. The third
cycle may include the decryption module 110 taking the first
and second bit matrices and running a bit mixing scheme
602 on each bit matrix. The bit mixing scheme 602 may
include the bit mixing scheme 602 of the “Bit Matrix
m(P+1)” decryption value set 1020(11). The third cycle may
include the decryption module 110 inputting the decryption
decider 612 from the decryption value set 1020(11) into the
Transformation Engine m(P+1) and using the Transforma-
tion Engine m(P+1) on the mixed first and second bit
matrices. The first transformation may include joining the
bits in the bit matrices in to create first and second nibble
matrices.

In one embodiment, the first transformation may include
a fourth cycle. The fourth cycle may include the decryption
module 110 retrieving the bit value 604 from the “Bit Matrix
P-1” decryption value set 1020(10) and retrieving the
corresponding bit value table from the decryption module
110. The decryption module 110 may use the bit value table
to convert each cell in the first and second bit matrices (after
they have been through the third cycle) into a different
four-bit number according to the bit value table. The fourth
cycle may include the decryption module 110 taking the first
and second bit matrices and running a bit mixing scheme
602 on each bit matrix. The bit mixing scheme 602 may
include the bit mixing scheme of the “Bit Matrix P-1"
decryption value set 1020(10). The fourth cycle may include
the decryption module 110 inputting the decryption decider
612 from the decryption value set 1020(10) into the Trans-
formation Engine P-1 and using the Transformation Engine
P-1 on the mixed first and second bit matrices.

In one embodiment, the first transformation may include
a fifth cycle. The fifth cycle may include the decryption
module 110 retrieving the bit value 604 from the “Bit Matrix
P+1” decryption value set 1020(9) and retrieving the corre-
sponding bit value table from the decryption module 110.
The decryption module 110 may use the bit value table to
convert each cell in the first and second bit matrices (after
they have been through the fourth cycle) into a different
four-bit number according to the bit value table. The fifth
cycle may include the decryption module 110 taking the first
and second bit matrices and running a bit mixing scheme
602 on each bit matrix. The bit mixing scheme 602 may
include the bit mixing scheme of the “Bit Matrix P+1”
decryption value set 1020(9). The fifth cycle may include the
decryption module 110 inputting the decryption decider 612
from the decryption value set 1020(9) into the Transforma-

10

15

20

25

30

40

45

50

55

60

65

30

tion Engine P+1 and using the Transformation Engine P+1
on the mixed first and second bit matrices.

The first transformation may include joining the bits in the
bit matrices in order to create first and second nibble
matrices. In one embodiment, the decryption module 110
may use the first and second nibble matrices as input to the
second transformation. In one embodiment, the second
transformation may include a first cycle. The first cycle may
include the decryption module 110 running the Transforma-
tion Engine P-153 on the first and second nibble matrices.

In one embodiment, the second transformation may
include a second cycle. The second cycle may include the
decryption module 110 taking the first and second nibble
matrices (after they have been through the first cycle) and
running a nibble mixing scheme 602 on the first and second
nibble matrices. The nibble mixing scheme 602 may include
the nibble mixing scheme 602 included in the “Nibble
Matrix m(P-1)" decryption value set 1020(8). The second
cycle may include the decryption module 110 inputting the
decryption decider 612 from the decryption value set 1020
(8) into the Transformation Engine m(P-1) and using the
Transformation Engine m(P-1) on the mixed first and sec-
ond nibble matrices.

In one embodiment, the second transformation may
include a third cycle. The third cycle may include the
decryption module 110 running a nibble mixing scheme 602
on each nibble matrix (after they have been through the
second cycle). The nibble mixing scheme 602 may include
the nibble mixing scheme 602 included in the “Nibble
Matrix m(P+1)” decryption value set 1020(7). The third
cycle may include the decryption module 110 inputting the
decryption decider 612 from the decryption value set 1020
(7) into the Transformation Engine m(P+1) and using the
Transformation Engine m(P+1) on the first and second
nibble matrices. The second transformation may include
joining each nibble in each of the first and second nibble
matrices in order to generate a first character matrix and a
second character matrix.

In one embodiment, the second transformation may
include a fourth cycle. The fourth cycle may include the
decryption module 110 taking the first and second nibble
matrices (after they have been through a third cycle) and
running a nibble mixing scheme 602 on the first and second
nibble matrices. The nibble mixing scheme 602 may include
the nibble mixing scheme included in the “Nibble Matrix
P-1” decryption value set 1020(6). The fourth cycle may
include the decryption module 110 inputting the decryption
decider 612 from the decryption value set 1020(6) into the
Transformation Engine P-1 and using the Transformation
Engine P-1 on the mixed first and second nibble matrices.

In one embodiment, the second transformation may
include a fifth cycle. The fifth cycle may include the
decryption module 110 taking the first and second matrices
(after they have been through a fourth cycle) and running a
nibble mixing scheme 602 on the first and second nibble
matrices. The nibble mixing scheme 602 may include the
nibble mixing scheme included in the “Nibble Matrix P+1”
decryption value set 1020(5). The fifth cycle may include the
decryption module 110 inputting the decryption decider 612
from the decryption value set 1020(5) into the Transforma-
tion Engine P+1 and using the Transformation Engine P+1
on the mixed first and second nibble matrices.

The second transformation may include joining each
nibble in each of the first and second nibble matrices in order
to generate first and second character matrices. In one
embodiment, the decryption module 110 may use the first
and second character matrices as input to the third transfor-

US 12,531,722 B2

31

mation. In one embodiment, the third transformation may
include a first cycle. The first cycle may include the decryp-
tion module 110 running the Transformation Engine P-153
on the first and second character matrices.

In one embodiment, the third transformation may include
a second cycle. The second cycle may include the decryption
module 110 taking the first and second character matrices
(after they have been through the first cycle) and running a
character mixing scheme 602 on the first and second char-
acter matrices. The character mixing scheme 602 may
include the character mixing scheme 602 included in the
“Character Matrix m(P-1)" decryption value set 1020(4).
The second cycle may include the decryption module 110
inputting the decryption decider 612 from the decryption
value set 1020(4) into the Transformation Engine m(P-1)
and using the Transformation Engine m(P-1) on the mixed
first and second character matrices.

The third transformation may include a third cycle. The
third cycle may include the decryption module 110 taking
the first and second character matrices (after they have been
through the second cycle) and running a character mixing
scheme 602 on each character matrix. The character mixing
scheme 602 may include the character mixing scheme 602
included in the “Character Matrix m(P+1)” decryption value
set 1020(3). The third cycle may include the decryption
module 110 inputting the decryption decider 612 from the
decryption value set 1020(3) into the Transformation Engine
m(P+1) and using the Transformation Engine m(P+1) on the
mixed first and second character matrices.

In one embodiment, the third transformation may include
a fourth cycle. The fourth cycle may include the decryption
module 110 taking the first and second character matrices
(after they have been through a third cycle) and running a
character mixing scheme 602 on the first and second char-
acter matrices. The character mixing scheme 602 may
include the character mixing scheme included in the “Char-
acter Matrix P-1” decryption value set 1020(2). The fourth
cycle may include the decryption module 110 inputting the
decryption decider 612 from the decryption value set 1020
(2) into the Transformation Engine P-1 and using the
Transformation Engine P-1 on the mixed first and second
character matrices.

In one embodiment, the third transformation may include
a fifth cycle. The fifth cycle may include the decryption
module 110 taking the first and second character matrices
(after they have been through a fourth cycle) and running a
mixing scheme 602 on the first and second character matri-
ces. The character mixing scheme 602 may include the
character mixing scheme included in the “Character Matrix
P+1” decryption value set 1020(1). The fifth cycle may
include the decryption module 110 inputting the decryption
decider 612 from the decryption value set 1020(1) into the
Transformation Engine P+1 and using the Transformation
Engine P+1 on the mixed first and second character matri-
ces. At this point, the first and second character matrices may
form the decrypted plaintext. The method 1100 may include
removing any padding in the plaintext. At this point, the
decryption of the body 406 is complete.

Proof of Work

In one embodiment, the systems and methods disclosed
herein may provide a proof-of-work protocol. The proof-of-
work protocol may include one or more procedures, called
gateway proofs, that the sender of a ciphertext 400 and the
receiver of the ciphertext 400 each complete. A gateway
proof may demonstrate that the sender or receiver expended
a certain amount of computational effort to complete the

10

15

20

25

30

35

40

45

50

55

60

65

32

gateway proof. The sender or receiver of the ciphertext 400
may complete a gateway proof in non-deterministic poly-
nomial time.

FIG. 12 depicts one embodiment of a data flow 1200
showing the operation of one embodiment of a proof-of-
work. In one embodiment, each gateway proof or other
operation must be completed (by the respective sender or
recipient) in order to move on to the next gateway proof or
operation. In some embodiments, the operations 1202-1212
performed by the sender may be performed by the encryp-
tion module 108 of the sender’s computing device 102. The
operations 1214-1226 performed by the recipient may be
performed by the decryption module 110 of the recipient’s
computing device 120.

In one embodiment, the first gateway proof 1202 may
include the sender generating the group policy 502. This
may include one or more operations discussed above in
relation to step 702 of the method 700 of FIG. 7. The second
gateway proof 1204 may include the sender generating the
entity policy 504. This may include one or more operations
discussed above in relation to step 704 of the method 700.
The third gateway proof 1206 may include the sender
generating the first unique identifier of the ciphertext policy
506, which may include the string of text established by the
user, group, or organization using the computing device 102
as discussed above in relation to FIG. 5. The fourth gateway
proof 1208 may include the sender generating the second
unique identifier of the ciphertext policy 506, which may
include the three binary values that will be appended to the
ciphertext body 406. The third and fourth gateway proofs
1206, 1208 may include one or more operations discussed
above in relation to step 706 of the method 700.

In one embodiment, after completion of the four gateways
1202-1208 by the sender, the witness module 106 may, as
part of the operation 1210, generate the encryption value sets
620 used in the encryption of the ciphertext 400, as dis-
cussed above. The encryption module 108, as part of opera-
tion 1212, may use the encryption value sets 620 generated
in operations 1210 to encrypt the data to be encrypted to
generate the body 406, as discussed above in relation to the
method 900 of FIG. 9. The encryption module 108 may use
the results of the gateway proofs 1202-1208, the witness
operations 1210, and the ciphertext encryption 1212 to
create the ciphertext 400, as discussed above in relation to
steps 708-712 of the method 700. The sender may then send
the ciphertext 400 to the recipient.

The recipient may receive the ciphertext 400. In one
embodiment, the first gateway proof 1214 may include the
recipient determining whether the group policy 502 of the
header 402 of the received ciphertext 400 matches the group
policy 502 the recipient has stored (e.g., in the data storage
112 of the recipient’s computing device 120). The second
gateway proof 1216 may include the recipient determining
whether the USUP in the entity policy 504 of the header 402
of' the received ciphertext 400 matches the USUP associated
with the sender that the recipient has stored. The third
gateway proof 1218 may include the recipient determining
whether the first unique identifier of the ciphertext policy
506 of the received ciphertext 400 matches the first unique
identifier established during the setup process. The fourth
gateway proof 1220 may include the recipient determining
whether the second unique identifier of the ciphertext policy
506 of the received ciphertext 400 matches the ciphertext’s
400 length.

In one embodiment, the recipient may perform an integ-
rity check 1222. The integrity check 1222 may include the
decryption module 120 recreating the file directories and file

US 12,531,722 B2

33

configurations the setup module 104 generated during the
setup process of the method 200 of FIG. 2. The recreated file
directories and file configurations may include copies of the
file directories and configurations set up by the setup module
104 of the sender or of the receiver.

In some embodiments, the recipient may decrypt the
instructions 404 of the ciphertext 400 (1224). Decrypting the
instructions 404 (1224) may include one or more operations
of'the decrypting the instructions 404 step 808 of the method
800 of FIG. 8. In some embodiments, the recipient may
decrypt the ciphertext body 406 (1226). Decrypting the body
406 (1226) may include one or more of the steps of the
method 900 of FIG. 9.

Binary Fingerprint Storage

FIG. 13 depicts one embodiment of a system 1300. The
system 1300 may include the computing device 102 of FIG.
1. The system 1300 may include a third-party computing
device 1302. The third-party computing device 1302 may
include a binary fingerprint storage 1304. The binary fin-
gerprint storage 1304 may store one or more binary finger-
prints. The computing device 102 and the third-party com-
puting device 1302 may be in data communication with each
other over the data network 130 of FIG. 1. In one embodi-
ment, the third-party computing device 1302 may include at
least two functions: storing copies of binary fingerprints and
sending a copy of a binary fingerprint to a computing device
102 in response to a request. In some embodiments, the
third-party computing device 1302 may not generate binary
fingerprints, only store them and send copies of them.

In one embodiment, during or after the setup process of
the method 200 of FIG. 2, the setup module 104 of the
computing device 102 may send the binary fingerprint of a
user to the third-party computing device 1302 for storage of
the binary fingerprint. The setup module 104 may send an
identifier to be associated with the binary fingerprint. The
identifier may include an employee ID number of the user
whose binary fingerprint it is. The identifier may include an
email address, a username, or some other identifying infor-
mation.

In one embodiment, as part of an operation of the com-
puting device 102, such as the execution of a self-authen-
tication operation, discussed above, the computing device
102 may request a binary fingerprint. The request may
include an identifier associated with the requested binary
fingerprint. The third-party computing device 1302 may
send the requested binary fingerprint in response to the
request. The binary fingerprint may include the binary
fingerprint of the requesting user. The binary fingerprint may
include a binary fingerprint of another user of another
computing device 120.

In one embodiment, the binary fingerprint storage 1304
may include one or more files stored in a file system of the
third-party computing device. The binary fingerprint storage
1304 may include a database. The binary fingerprint storage
1304 may include a distributed ledger, such as a blockchain.
A binary fingerprint may be stored in a distributed ledger
transaction of the distributed ledger. In an embodiment
where the binary fingerprint storage 1304 includes a distrib-
uted ledger, the third-party computing device 1302 may
include a distributed ledger or blockchain node. In other
embodiments, the third-party computing device 1302 may
be in data communication with a distributed ledger/block-
chain node.

Software/Hardware

While the making and using of various embodiments of
the present disclosure are discussed in detail herein, it should
be appreciated that the present disclosure provides many

10

15

20

25

30

35

40

45

50

55

60

34

applicable inventive concepts that are embodied in a wide
variety of specific contexts. The specific embodiments dis-
cussed herein are merely illustrative of specific ways to
make and use the disclosure and do not delimit the scope of
the disclosure. Those of ordinary skill in the art will recog-
nize numerous equivalents to the specific apparatuses, sys-
tems, and methods described herein. Such equivalents are
considered to be within the scope of this disclosure and may
be covered by the claims.

Furthermore, the described features, structures, or char-
acteristics of the disclosure may be combined in any suitable
manner in one or more embodiments. In the description
contained herein, numerous specific details are provided,
such as examples of programming, software, user selections,
hardware, hardware circuits, hardware chips, or the like, to
provide understanding of embodiments of the disclosure.
One skilled in the relevant art will recognize, however, that
the disclosure may be practiced without one or more of the
specific details, or with other methods, components, mate-
rials, apparatuses, devices, systems, and so forth. In other
instances, well-known structures, materials, or operations
may not be shown or described in detail to avoid obscuring
aspects of the disclosure.

These features and advantages of the embodiments will
become more fully apparent from the description and
appended claims or may be learned by the practice of
embodiments as set forth herein. As will be appreciated by
one skilled in the art, aspects of the present disclosure may
be embodied as an apparatus, system, method, computer
program product, or the like. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module,” or
“system.” Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer-readable media having program
code embodied thereon.

In some embodiments, a module may be implemented as
a hardware circuit comprising custom (very large-scale
integration) VLSI circuits or gate arrays, off-the-shelf semi-
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in pro-
grammable hardware devices such as field programmable
gate arrays, programmable array logic, programmable logic
devices or the like.

Modules may also be implemented in software for execu-
tion by various types of processors. An identified module of
program code may, for instance, comprise one or more
physical or logical blocks of computer instructions which
may, for instance, be organized as an object, procedure, or
function. Nevertheless, the executables of an identified
module need not be physically located together, but may
comprise disparate instructions stored in different locations
which, when joined logically together, comprise the module
and achieve the stated purpose for the module.

Indeed, a module of program code may be a single
instruction, or many instructions, and may even be distrib-
uted over several different code segments, among different
programs, and across several memory devices. Similarly,
operational data may be identified and illustrated herein
within modules, and may be embodied in any suitable form
and organized within any suitable type of data structure. The
operational data may be collected as a single data set, or may
be distributed over different locations including over differ-
ent storage devices, and may exist, at least partially, merely

US 12,531,722 B2

35

as electronic signals on a system or network. Where a
module or portions of a module are implemented in soft-
ware, the program code may be stored and/or propagated on
in one or more computer-readable media.

In some embodiments, a module may include a smart
contract hosted on a blockchain. The functionality of the
smart contract may be executed by a node (or peer) of the
blockchain network. One or more inputs to the smart con-
tract may be read or detected from one or more transactions
stored on or referenced by the blockchain. The smart con-
tract may output data based on the execution of the smart
contract as one or more transactions to the blockchain. A
smart contract may implement one or more methods or
algorithms described herein.

The computer program product may include a computer-
readable storage medium (or media) having computer-read-
able program instructions thereon for causing a processor to
carry out aspects of the present disclosure. A computer-
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

Computer-readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer-readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer-readable program instructions from the
network and forwards the computer-readable program
instructions for storage in a computer-readable storage
medium within the respective computing/processing device.

Computer-readable program instructions for carrying out
operations of the present disclosure may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer-readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLLA) may execute the computer-
readable program instructions by utilizing state information
of the computer-readable program instructions to personal-
ize the electronic circuitry, in order to perform aspects of the
present disclosure.

25

30

40

45

55

36

Aspects of the present disclosure are described herein
with reference to flowchart illustrations or block diagrams of
methods, apparatuses, systems, algorithms, or computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer-readable program instruc-
tions.

These computer-readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer-readable program instructions may also be stored
in a computer-readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer-readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer-readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks.

The schematic flow chart diagrams included herein are
generally set forth as logical flow chart diagrams. As such,
the depicted order and labeled steps are indicative of one
embodiment of the presented method. Other steps and
methods may be conceived that may be equivalent in
function, logic, or effect to one or more steps, or portions
thereof, of the illustrated method. Additionally, the format
and symbols employed are provided to explain the logical
steps of the method and are understood not to limit the scope
of the method. Although various arrow types and line types
may be employed in the flow chart diagrams, they are
understood not to limit the scope of the corresponding
method. Indeed, some arrows or other connectors may be
used to indicate only the logical flow of the method. For
instance, an arrow may indicate a waiting or monitoring
period of unspecified duration between enumerated steps of
the depicted method. Additionally, the order in which a
particular method occurs may or may not strictly adhere to
the order of the corresponding steps shown.

The schematic flowchart diagrams and/or schematic block
diagrams in the Figures illustrate the architecture, function-
ality, and operation of possible implementations of appara-
tuses, systems, methods and computer program products
according to various embodiments of the present disclosure.
In this regard, each block in the schematic flowchart dia-
grams and/or schematic block diagrams may represent a
module, segment, or portion of code, which comprises one
or more executable instructions of the program code for
implementing the specified logical function(s).

It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the Figures. For example, two blocks

US 12,531,722 B2

37

shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. Other steps and methods may be conceived that
are equivalent in function, logic, or effect to one or more
blocks, or portions thereof, of the illustrated Figures.

Although various arrow types and line types may be
employed in the flowchart and/or block diagrams, they are
understood not to limit the scope of the corresponding
embodiments. Indeed, some arrows or other connectors may
be used to indicate only the logical flow of the depicted
embodiment. For instance, an arrow may indicate a waiting
or monitoring period of unspecified duration between enu-
merated steps of the depicted embodiment. It will also be
noted that each block of the block diagrams and/or flowchart
diagrams, and combinations of blocks in the block diagrams
and/or flowchart diagrams, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and program code.

Thus, although there have been described particular
embodiments of the present disclosure of a new and useful
SYSTEMS AND METHODS FOR DATA ENCRYPTION,
DECRYPTION, AND AUTHENTICATION it is not
intended that such references be construed as limitations
upon the scope of this disclosure.

What is claimed is:
1. A computer-implemented method for generating a pair
of integer values as matrix dimensions for encrypting data,
comprising:
generating a first pair of integer values (m, n) at random,
wherein m represents a number of rows in a matrix and
n represents a number of columns in a matrix;

evaluating at least one property of the first pair of integer
values, wherein the at least one property comprises a
measure of randomness;

applying selection logic to the first pair of integer values,

wherein the selection logic is configured to accept or
reject a pair of integer values based on at least one
predefined criterion that is satisfied when the pair of
integer values meets a predefined threshold for ran-
domness;

determining whether the first pair of integer values is

accepted or rejected based on the applied selection
logic;

assigning the first pair of integer values as dimensions of

a matrix for encrypting data when the first pair of
integer values is accepted based on the applied selec-
tion logic;

selecting an ordered sequence of two or more transfor-

mation engines, wherein the two or more transforma-
tion engines comprise two or more of Transformation
Engine P+1, Transformation Engine P-1, Transforma-
tion Engine P-153, Transformation Engine m (P+1), or
Transformation Engine m (P-1), and each Transforma-
tion engine executes a different entropy function on the
matrix; and

executing, based on the selected ordered sequence of the

two or more transformation engines, a mixing scheme
on the matrix for encrypting data.

2. The computer-implemented method of claim 1,
wherein executing the mixing scheme on the matrix for
encrypting data comprises applying the two or more trans-
formation engines in the ordered sequence, wherein the
ordered sequence determines an encryption output.

10

15

20

25

30

35

40

45

50

55

60

65

38

3. The computer-implemented method of claim 2,
wherein applying the two or more transformation engines in
the ordered sequence comprises:

inputting the matrix for encrypting data into a first trans-

formation engine of the two or more transformation
engines based on the ordered sequence, wherein the
first transformation engine is first in the ordered
sequence;

executing the first transformation engine on the matrix for

encrypting data, wherein the first transformation engine
is configured to transform the matrix and output a first
transformed matrix in response;
inputting the first transformed matrix into a second trans-
formation engine of the two or more transformation
engines based on the ordered sequence, wherein the
second transformation engine is second in the ordered
sequence;
executing the second transformation engine on the matrix
for encrypting data, wherein the second transformation
engine is configured to transform the matrix and output
a second transformed matrix in response; and

continuing inputting a transformed matrix output by an
immediately prior transformation engine execution into
a subsequent transformation engine execution based on
the ordered sequence until the ordered sequence is
complete.

4. The computer-implemented method of claim 2,
wherein applying the two or more transformation engines in
the ordered sequence comprises:

executing a transformation cycle on the matrix for

encrypting data by applying a predetermined number of
permutations on the matrix; and

determining whether a mathematical condition is satis-

fied.

5. The computer-implemented method of claim 4,
wherein the predetermined number of permutations is
obtained from an encryption decider.

6. The computer-implemented method of claim 4,
wherein each of the permutations on the matrix comprises
shuffling cells of the matrix.

7. The computer-implemented method of claim 4, further
comprising, in response to the condition being satisfied,
initiating a subsequent transformation cycle on the matrix.

8. The computer-implemented method of claim 4, further
comprising, in response to the condition not being satisfied,
terminating the executing of the transformation cycle on the
matrix.

9. The computer-implemented method of claim 4,
wherein determining whether a mathematical condition is
satisfied comprises comparing a number of completed trans-
formation cycles to a predetermined cycle count, wherein
the condition is satisfied when the number of completed
transformation cycles equals the predetermined cycle count.

10. The computer-implemented method of claim 1, fur-
ther comprising:

performing an encryption operation with the ordered

sequence of two or more transformation engines,
wherein the encryption operation is based on the order
in which the transformation engines of the ordered
sequence of two or more transformation engines are
applied.

11. The computer-implemented method of claim 10,
wherein executing the mixing scheme on the matrix for
encrypting data comprises executing each transformation
engine of the two or more transformation engines in the
ordered sequence by performing a comparison between the

US 12,531,722 B2

39

transformation engine at each position in the ordered
sequence and the transformation engine pending execution
in the ordered sequence.
12. The computer-implemented method of claim 10, fur-
ther comprising:
detecting, based on the comparison, a transformation
engine out of the ordered sequence prior to executing
the transformation engine; and
terminating the encryption operation in response.
13. The computer-implemented method of claim 10, fur-
ther comprising:
determining, based on the comparison, that a transforma-
tion engine was executed out of the ordered sequence;
and
terminating the encryption operation in response.

#* #* #* #* #*

10

15

40

	Front Page
	Drawings
	Specification
	Claims

